• Title/Summary/Keyword: secondary emission

Search Result 399, Processing Time 0.03 seconds

Development of Primary Standard Gas Mixtures for Monitoring Monoterpenes (α-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) Ambient Levels (at 2 nmol/mol) (대기 중 모노테르펜 (α-피넨, 3-카렌, R-리모넨, 1,8-시네올) 측정을 위한 혼합표준가스개발)

  • Kang, Ji Hwan;Kim, Mi Eon;Kim, Young Doo;Rhee, Young Woo;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.320-328
    • /
    • 2016
  • Among biogenic volatile organic compounds (BVOCs) in the natural ecosystem, monoterpenes, along with isoprene, play important roles in atmospheric chemistry and make significant impacts on air pollution and climate change, especially due to their contribution to secondary organic aerosol production and photochemical ozone formation. It is essential to measure monoterpene concentrations accurately for understanding their oxidation processes, emission processes and estimation, and interactions between biosphere and atmosphere. Thus, traceable calibration standards are crucial for the accurate measurement of monoterpenes at ambient levels. However, there are limited information about developing calibrations standards for monoterpenes in pressured cylinders. This study describes about developing primary standard gas mixtures (PSMs) for monoterpenes at about 2 nmol/mol, near ambient levels. The micro-gravimetric method was applied to prepare monoterpene (${\alpha}$-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) PSMs at $10{\mu}mol/mol$ and then the PSMs were further diluted to 2 nmol/mol level. To select an optimal cylinder for the development of monoterpene PSMs, three different kinds of cylinders were used for the preparation and were evaluated for uncertainty sources including long-term stability. Results showed that aluminum cylinders with a special internal surface treatment (Experis) had little adsorption loss on the cylinder internal surface and good long-term stability compared to two other cylinder types with no treatment and a special treatment (Aculife). Results from uncertainty estimation suggested that monoterpene PSMs can be prepared in pressured cylinders with a special treatment (Experis) at 2 nmol/mol level with an uncertainty of less than 4%.

Purification, and Biochemical and Biophysical Characterization of Cellobiohydrolase I from Trichoderma harzianum IOC 3844

  • Colussi, Francieli;Serpa, Viviane;Da Silva Delabona, Priscila;Manzine, Livia Regina;Voltatodio, Maria Luiza;Alves, Renata;Mello, Bruno Luan;Nei, Pereira Jr.;Farinas, Cristiane Sanches;Golubev, Alexander M.;Santos, Maria Auxiliadora Morim;Polikarpov, Igor
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.808-817
    • /
    • 2011
  • Because of its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum has a considerable potential in biomass hydrolysis applications. Trichoderma harzianum cellobiohydrolase I (ThCBHI), an exoglucanase, is an important enzyme in the process of cellulose degradation. Here, we report an easy single-step ion-exchange chromatographic method for purification of ThCBHI and its initial biophysical and biochemical characterization. The ThCBHI produced by induction with microcrystalline cellulose under submerged fermentation was purified on DEAE-Sephadex A-50 media and its identity was confirmed by mass spectrometry. The ThCBHI biochemical characterization showed that the protein has a molecular mass of 66 kDa and pI of 5.23. As confirmed by smallangle X-ray scattering (SAXS), both full-length ThCBHI and its catalytic core domain (CCD) obtained by digestion with papain are monomeric in solution. Secondary structure analysis of ThCBHI by circular dichroism revealed ${\alpha}$- helices and ${\beta}$-strands contents in the 28% and 38% range, respectively. The intrinsic fluorescence emission maximum of 337 nm was accounted for as different degrees of exposure of ThCBHI tryptophan residues to water. Moreover, ThCBHI displayed maximum activity at pH 5.0 and temperature of $50^{\circ}C$ with specific activities against Avicel and p-nitrophenyl-${\beta}$-D-cellobioside of 1.25 U/mg and 1.53 U/mg, respectively.

Effects of Meteorological and Reclaiming Conditions on the Reduction of Suspended Particles (기상 조건과 매립 조건이 비산 먼지 발생에 미치는 영향)

  • Choi, Jae-Won;Lee, Young-Su;Kim, Jae-Jin
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1423-1436
    • /
    • 2010
  • The effects of meteorological and reclaiming conditions on the reduction of suspended particles are investigated using a computational fluid dynamics (CFD) model with the k-$\varepsilon$ turbulence closure scheme based on the renormalization group (RNG) theory. Twelve numerical experiments with different meteorological and reclaiming conditions are performed. For identifying the meteorological characteristics of the target area and providing the inflow conditions of the CFD model, the observed data from the automatic weather station (AWS) near the target area is analyzed. Complicated flow patterns such as flow distortion, horse-shoe vortex, recirculation zone, and channeling flow appeared due to the topography and buildings in the domain. Specially, the flow characteristics around the reclamation area are affected by the reclaiming height, reclaiming size and windbreak height. Reclaiming height affected the wind speed above the reclaiming area. Windbreak induces more complicated flow patterns around the reclaiming area as well as within the reclaiming area. In front of the windbreak, flow is distorted as it impinges on the windbreak. As a result, upward flow is generated there. Behind the windbreak, a secondary circulation, so called, a recirculation zone is generated and flow is reattached at the end of the recirculation zone (reattachment point). At the lower part of the recirculation zone, there is a reverse flow toward the windbreak. Flow passing to the reattachment point starts to be recovered. Total amounts of suspended particles are calculated using the frictional and threshold frictional velocities, erosion potential function, and the number of surface disturbance. In the case of a 10 m-reclaiming and northerly wind, the amount of suspended particles is largest. In the presence of 5 m windbreak, the friction velocity above the reclaiming area is largely reduced. As a result, the total amount of the suspended particles largely decreases, compared to the case with the same reclaiming and meteorological conditions except for the windbreak The calculated suspended particle amounts are used as the emission rate of the dispersion model simulations and the dispersion characteristics of the suspended particles are analyzed.

Formation of a large-scale quasi-circular flare ribbon enclosing three-ribbon through two-step eruptive flares

  • Lim, Eun-Kyung;Yurchyshyn, Vasyl;Kumar, Pankaj;Cho, Kyuhyoun;Kim, Sujin;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.42.1-42.1
    • /
    • 2016
  • The formation process and the dynamical properties of a large-scale quasi-circular flare ribbon were investigated using the SDO AIA and HMI data along with data from RHESSI and SOT. Within one hour time interval, two subsequent M-class flares were detected from the NOAA 12371 that had a ${\beta}{\gamma}{\delta}$ configuration with one bipolar sunspot group in the east and one unipolar spot in the west embedded in a decayed magnetic field. Earlier M2.0 flare was associated with a coronal loop eruption, and a two-ribbon structure formed within the bipolar sunspot group. On the other hand, the later M2.6 flare was associated with a halo CME, and a quasi-circular ribbon developed encircling the full active region. The observed quasi-circular ribbon was strikingly large in size spanning 650" in north-south and 500" in east-west direction. It showed the well-known sequential brightening in the clockwise direction during the decay phase of the M2.6 flare at the estimated speed of 160.7 km s-1. The quasi-circular ribbon also showed the radial expansion, especially in the southern part. Interestingly, at the time of the later M2.6 flare, the third flare ribbon parallel to the early two-ribbon structure also developed near the unipolar sunspot, then showed a typical separation in pair with the eastern most ribbon of the early two ribbons. The potential field reconstruction based on the PFSS model showed a fan shaped magnetic configuration including fan-like field lines stemming from the unipolar spot and fanning out toward the background decayed field. This large-scale fan-like field overarched full active region, and the footpoints of fan-like field lines were co-spatial with the observed quasi-circular ribbon. From the NLFF magnetic field reconstruction, we confirmed the existence of a twisted flux rope structure in the bipolar spot group before the first M2.0 flare. Hard X-ray emission signatures were detected at the site of twisted flux rope during the pre-flare phase of the M2.0 flare. Based on the analysis of both two-ribbon structure and quasi-circular ribbon, we suggest that a tether-cutting reconnection between sheared arcade overarching the twisted flux rope embedded in a fan-like magnetic field may have triggered the first M2.0 flare, then secondary M2.6 flare was introduced by the fan-spine reconnection because of the interaction between the expanding field and the nearby quasi-null and formed the observed large-scale quasi-circular flare ribbon.

  • PDF

A Study of Copper Electroless Deposition on Tungsten Substrate (텅스텐 기판 위에 구리 무전해 도금에 대한 연구)

  • Kim, Young-Soon;Shin, Jiho;Kim, Hyung-Il;Cho, Joong-Hee;Seo, Hyung-Ki;Kim, Gil-Sung;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.495-502
    • /
    • 2005
  • Copper was plated on the tungsten substrate by use of a direct copper electroless plating. The optimum deposition conditions were found to be with a concentration of $CuSO_4$ 7.615 g/L, EDTA of 10.258 g/L, and glyoxylic acid of 7 g/L, respectively. The solution temperature was maintained at $60^{\circ}C$. The pH was varied from 11.0 to 12.8. After the deposition, the properties of the copper film were investigated with X-ray diffractometer (XRD), Field emission secondary electron microscope (FESEM), Atomic force microscope (AFM), X-ray photoelectron spectroscope (XPS), and Rutherford backscattering spectroscope (RBS). The best deposition condition was founded to be the solution pH of 11.8. In the case of 10 min deposition at the pH of 11.8, the grain shape was spherical, Cu phase was pure without impurity peak ($Cu_2O$ peak), and the surface root mean square roughness was about 11 nm. The thickness of the film turned out to be 140 nm after deposition for 12 min and the deposition rate was found to be about 12 nm/min. Increase in pH induced a formation of $Cu_2O$ phase with a long rectangular grain shape. The pH control seems to play an important role for the orientation of Cu in electroless deposition. The deposited copper concentration was 99 atomic percent according to RBS. The resulting Cu/W film yielded a good adhesive strength, because Cu/W alloy forms during electroless deposition.

A study on Etch Characteristics of {Y-2}{O_3}$ Thin Films in Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 {Y-2}{O_3}$ 박막의 식각 특성 연구)

  • Kim, Yeong-Chan;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.9
    • /
    • pp.611-615
    • /
    • 2001
  • Y$_2$O$_3$ thin films have been proposed as a buffering insulator of metal/ferroelectric/insulator/semiconductor field effect transistor(MFISFET)-type ferroelectric random access memory (FRAM). In this study, $Y_2$O$_3$ thin films were etched with inductively coupled plasma(ICP). The etch rates of $Y_2$O$_3$ and YMnO$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were investigated by varying Cl$_2$/(Cl$_2$+Ar) gas mixing ratio. The maximum etch rate of $Y_2$O$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were 302$\AA$/min, and 2.4 at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2 respectively. Optical emission spectroscopy(OES) was used to understand the effects of gas combination on the etch rate of $Y_2$O$_3$ thin film. The surface reaction of the etched $Y_2$O$_3$ thin films was investigated by x-ray photoelectron spectroscopy (XPS). XPS analysis confirmed that there was chemical reaction between Y and Cl. This result was confirmed by secondary ion mass spectroscopy(SIMS) analysis.

  • PDF

Microstructure of Co-base superalloy prepared by a investment casting (정밀주조법으로 제조된 Co계 초내열 합금의 미세구조)

  • Lee, Jung-Il;Lee, Ho Jun;Cho, Hyun Su;Paeng, Jong Min;Park, Jong Bum;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.313-318
    • /
    • 2017
  • The microstructure of a cobalt-base superalloy (ECY768) obtained by an investment casting process was studied. This work focuses on the resulting microstructures arising from different melt and mold temperatures in normal industrial environmental conditions. The characterization of the samples was carried out using optical microscopy, field emission scanning electron microscopy and energy-dispersive spectroscopy. In this study, the as-cast microstructure is an ${\alpha}-Co$ (face-centered cubic) dendritic matrix with the presence of a secondary phase, such as $M_{23}C_6-type$ carbides precipitated at grain boundaries. These precipitates are the main strengthening mechanism in this type of alloy. Other minority phases, such as the MC-type phase, was also detected and their presence could be linked to the manufacturing process and environment.

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.

Potential Source of PM10, PM2.5, and OC and EC in Seoul During Spring 2016 (2016년 봄철 서울의 PM10, PM2.5 및 OC와 EC 배출원 기여도 추정)

  • Ham, Jeeyoung;Lee, Hae Jung;Cha, Joo Wan;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.41-54
    • /
    • 2017
  • Organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ were measured using Sunset OC/EC Field Analyzer at Seoul Hwangsa Monitoring Center from March to April, 2016. The mean concentrations of OC and EC during the entire period were $4.4{\pm}2.0{\mu}gC\;m^{-3}$ and $1.4{\pm}0.6{\mu}gC\;m^{-3}$, respectively. OC/EC ratio was $3.4{\pm}1.0$. The average concentrations of $PM_{10}$ and $PM_{2.5}$ were $57.4{\pm}25.9$ and $39.7{\pm}19.8{\mu}g\;m^{-3}$, respectively, which were detected by an optical particle counter. The OC and EC peaks were observed in the morning, which were impacted by vehicle emission, however, their diurnal variations were not noticeable. This is determined to be contributed by the long-range transported OC or secondary formation via photochemical reaction by volatile organic compounds at afternoon. A conditional probability function (CPF) model was used to identify the local source of pollution. High concentrations of $PM_{10}$ and $PM_{2.5}$ were observed from the westerly wind, regardless of wind speed. When wind velocity was high, a mixing plume of dust and pollution during long-range transport from China in spring was observed. In contrast, pollution in low wind velocity was from local source, regardless of direction. To know the effect of long-range transport on pollution, a concentration weighted trajectory (CWT) model was analyzed based on a potential source contribution function (PSCF) model in which 75 percentiles high concentration was picked out for CWT analysis. $PM_{10}$, $PM_{2.5}$, OC, and EC were dominantly contributed from China in spring, and EC results were similar in both PSCF and CWT. In conclusion, Seoul air quality in spring was mainly affected by a mixture of local pollution and anthropogenic pollutants originated in China than the Asian dust.

Testing and Numerical Analysis on the Fracture Characteristics of Composite Adhesive Bonded Single-Lap Joints (복합재료 Single-Lap 본딩 조인트의 파괴 특성에 대한 실험 및 수치해석 연구)

  • 김광수;박재성;장영순;이영무
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.45-53
    • /
    • 2003
  • The experimental and numerical investigations on the failure characteristics of the secondary bonded composite single-lap joints were performed. The initiations and growths of cracks were observed using CCD camera and acoustic emission sensor during the tension tests of the joint specimens. The structural behaviors of the specimens were predicted by the geometric nonlinear two-dimensional finite element analysis. The three types of observed initial cracks were included in each finite element models and the strain energy release rates of each specimen models were calculated by VCCT(Virtual Crack Closure Technique) technique. The tension tests showed that the initial cracks occurred in the 60∼90% of final failure loads and the major failure modes of the specimens were adhesive failure and the delamination between the 1st and 2nd ply of laminate. The specimens with the thicker bondline had earlier crack initiation loads but higher crack propagation resistance and eventually better loading capability. The delaminations were mostly observed in the thicker bondline specimens. The mode I values of calculated strain energy release rates were higher than the mode II values in the all specimen models considering the three types of initial cracks. The mode I and total strain energy release rates were calculated as higher values in the order of initial crack in the edge interface, comer interface and delamination between the plies of laminate.