Browse > Article
http://dx.doi.org/10.14191/Atmos.2017.27.1.041

Potential Source of PM10, PM2.5, and OC and EC in Seoul During Spring 2016  

Ham, Jeeyoung (Environmental Meteorology Research Division, National Institute of Meteorological Sciences)
Lee, Hae Jung (Environmental Meteorology Research Division, National Institute of Meteorological Sciences)
Cha, Joo Wan (Environmental Meteorology Research Division, National Institute of Meteorological Sciences)
Ryoo, Sang-Boom (Environmental Meteorology Research Division, National Institute of Meteorological Sciences)
Publication Information
Atmosphere / v.27, no.1, 2017 , pp. 41-54 More about this Journal
Abstract
Organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ were measured using Sunset OC/EC Field Analyzer at Seoul Hwangsa Monitoring Center from March to April, 2016. The mean concentrations of OC and EC during the entire period were $4.4{\pm}2.0{\mu}gC\;m^{-3}$ and $1.4{\pm}0.6{\mu}gC\;m^{-3}$, respectively. OC/EC ratio was $3.4{\pm}1.0$. The average concentrations of $PM_{10}$ and $PM_{2.5}$ were $57.4{\pm}25.9$ and $39.7{\pm}19.8{\mu}g\;m^{-3}$, respectively, which were detected by an optical particle counter. The OC and EC peaks were observed in the morning, which were impacted by vehicle emission, however, their diurnal variations were not noticeable. This is determined to be contributed by the long-range transported OC or secondary formation via photochemical reaction by volatile organic compounds at afternoon. A conditional probability function (CPF) model was used to identify the local source of pollution. High concentrations of $PM_{10}$ and $PM_{2.5}$ were observed from the westerly wind, regardless of wind speed. When wind velocity was high, a mixing plume of dust and pollution during long-range transport from China in spring was observed. In contrast, pollution in low wind velocity was from local source, regardless of direction. To know the effect of long-range transport on pollution, a concentration weighted trajectory (CWT) model was analyzed based on a potential source contribution function (PSCF) model in which 75 percentiles high concentration was picked out for CWT analysis. $PM_{10}$, $PM_{2.5}$, OC, and EC were dominantly contributed from China in spring, and EC results were similar in both PSCF and CWT. In conclusion, Seoul air quality in spring was mainly affected by a mixture of local pollution and anthropogenic pollutants originated in China than the Asian dust.
Keywords
CPF; PSCF; CWT; Asian dust; long-range transport pollutants;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Cho, S., H. Kim, Y. Han, and W. Kim, 2016: Characteristics of fine particles measured in two different functional areas and identification of factors enhancing their concentrations. J. Korean Soc. Atmos. Environ., 32, 100-113, doi:10.5572/KOSAE.2016.32.1.100 (in Korean with English abstract).   DOI
2 Choi, J. C., M. Lee, Y. Chun, J. Kim, and S. Oh, 2001: Chemical composition and source signature of spring aerosol in Seoul, Korea. J. Geophy. Res., 106, 18067-18074, doi:10.1029/2001JD900090.   DOI
3 Choi, J. K., J. B. Heo, S. J. Ban, S. M. Yi, and K. D. Zoh, 2012: Chemical characteristics of $PM_{2.5}$ aerosol in Incheon, Korea. Atmos. Environ., 60, 583-592, doi:10.1016/j.atmosenv.2012.06.078.   DOI
4 Choi, N., J. Lee, C. Jung, S. Lee, S. Yi, and Y. Kim, 2015: Concentrations and characteristics of carbonaceous compounds in $PM_{10}$ over Seoul: Measurement between 2006 and 2007. J. Korean Soc. Atmos. Environ., 31, 345-355, doi:10.5572/KOSAE.2015.31.4.345 (in Korean with English abstract).   DOI
5 Chow, J. C., J. G. Watson, P. Doraiswamy, L.-W. A. Chen, D. A. Sodeman, D. H. Lowenthal, K. Park, W. P. Arnott, and N. Motallebi, 2009: Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California. Atmos. Res., 93, 874-887, doi:10.1016/j.atmosres.2009.04.010.   DOI
6 Fujii, Y., W. Iriana, M. Oda, A. Puriwigati, S. Tohno, P. Lestari, A. Mizohata, and H. S. Huboyo, 2014: Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia. Atmos. Environ., 87, 164-169, doi:10.1016/j.atmosenv.2014.01.037.   DOI
7 Gao, N., M. D. Cheng, and P. K. Hopke, 1993: Potential source contribution function analysis and source apportionment of sulfur species measured at Rubidoux, CA during the Southern California Air Quality Study, 1987. Anal. Chim. Acta, 277, 369-380, doi:10.1016/0003-2670(93)80449-U.   DOI
8 Gentner, D. R., and Coauthors, 2012: Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions. Proc. Natl. Acad. Sci. USA, 109, 18318-18323, doi:10.1073/pnas.1212272109.   DOI
9 Yang, F., K. He, B. Ye, X. Chen, L. Cha, S. H. Cadle, T. Chan, and P. A. Mulawa, 2005: One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai. Atmos. Chem. Phys., 5, 1449-1457, doi:10.5194/acp-5-1449-2005.   DOI
10 Yu, G., S. Cho, M. Bae, K. Lee, and S. Park, 2015: Investigation of $PM_{2.5}$ Pollution Episodes in Gwangju. J. Korean Soc. Atmos. Environ., 31, 269-286, doi:10.5572/KOSAE.2015.31.3.269 (in Korean with English abstract).   DOI
11 Ham, J. Y., M. Lee, H. Kim, H. Park, G. Cho, and J. Park, 2016: Variation of OC and EC in $PM_{2.5}$ at Mt. Taehwa. J. Korean Soc. Atmos. Environ., 32, 21-31, doi:10.5572/KOSAE.2016.32.1.021 (in Korean with English abstract).   DOI
12 Harrison, R. M., D. Laxen, S. Moorcroft, and K. Laxen, 2012: Processes affecting concentrations of fine particulate matter in the UK atmosphere. Atmos. Environ., 46, 115-124, doi:10.1016/j.atmosenv.2011.10.028.   DOI
13 Hopke, P. K., N. Gao, and M. D. Cheng, 1993: Combining chemical and meteorological data to infer source areas of airborne pollutants. Chemometr. Intell. Lab., 19, 187-199, doi:10.1016/0169-7439(93)80103-O.   DOI
14 Hopke, P. K., L. A. Barrie, S.-M. Li, M.-D. Cheng, C. Li, and Y. Xie, 1995: Possible sources and preferred pathways for biogenic and non-sea salt sulfur for the high Arctic. J. Geophys. Res., 100, 16595-16603.   DOI
15 Hsu, Y., T. M. Holsen, and P. K. Hopke, 2003: Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ., 37, 545-562, doi:10.1016/S1352-2310(02)00886-5.   DOI
16 Kang, B. W., C. Kang, H. Lee, and Y. Sunwoo, 2008a: Identification of potential source locations of $PM_{2.5}$ in Seoul using Hybrid-receptor Models. J. Korean Soc. Atmos. Environ., 24, 662-673, doi:10.5572/KOSAE.2008.24.6.662 (in Korean with English abstract).   DOI
17 Jeong, U., J. Kim, H. Lee, J. Jung, Y. Kim, C. Song, and J. Koo, 2011: Estimation of the contributions of long range transported aerosol in East Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea using highly time resolved measurements: A PSCF model approach. J. Environ. Monitor., 13, 1905-1918, doi:10.1039/C0EM00659A.   DOI
18 Ji, D., J. Zhang, J. He, X. Wang, B. Pang, Z. Liu, L. Wang, and Y. Wang, 2016: Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China. Atmos. Environ., 125, 293-306, doi:10.1016/j.atmosenv.2015.11.020.   DOI
19 Jung, J., S. Kim, B. Choi, K. Kim, J. Huh, S. Yi, and Y. Han, 2009: A Study on the characteristics of carbonaceous compounds in $PM_{2.5}$ measured in Chuncheon and Seoul. J. Korean Soc. Atmos. Environ., 25, 141-153, doi:10.5572/KOSAE.2009.25.2.141 (in Korean with English abstract).   DOI
20 Kang, C. M., H. S. Lee, B. W. Kang, S. K. Lee, and Y. Sunwoo, 2004: Chemical characteristics of acidic gas pollutants and $PM_{2.5}$ species during hazy episodes in Seoul, South Korea. Atmos. Environ., 38, 4749-4760, doi:10.1016/j.atmosenv.2004.05.007.   DOI
21 Kang, C. M., B. W. Kang, Y. Sunwoo, and H. S. Lee, 2008b: Application of representative $PM_{2.5}$ source profiles for the chemical mass balance study in Seoul. J. Korean Soc. Atmos. Environ., 24, 32-43.
22 Kim, H., J. Jung, J. Lee, and S. Lee, 2015: Seasonal characteristics of organic carbon and elemental carbon in $PM_{2.5}$ in Daejeon. J. Korean Soc. Atmos. Environ., 31, 28-70, doi:10.5572/KOSAE.2015.31.1.028 (in Korean with English abstract).   DOI
23 Koo, Y. S., D. R. Choi, H. Y. Kwon, Y. K. Jang, and J. S. Han, 2015: Improvement of $PM_{10}$ prediction in East Asia using inverse modeling. Atmos. Envrion., 106, 318-328, doi:10.1016/j.atmosenv.2015.02.004.   DOI
24 Kim, E., and P. K. Hopke, 2004: Source apportionment of fine particles in Washington, DC, utilizing temperatureresolved carbon fractions. J. Air Waste Manage. Assoc., 54, 773-785, doi:10.1080/10473289.2004.10470948.   DOI
25 Kim, Y.-P., 1999: Air quality in Northeast Asia with emphasis on China, Korean. J. Korean Soc. Atmos. Environ., 15, 211-217 (in Korean with English abstract).
26 KMA, 2016: Monthly report.
27 Lee, H., C. Kang, B. Kang, and S. Lee, 2005: A study on the $PM_{2.5}$ source characteristics affecting the Seoul area using a Chemical Mass Balance Receptor Model. J. Korean Soc. Atmos. Environ., 21, 329-341 (in Korean with English abstract).
28 Lee, S., C. H. Ho, Y. G. Lee, H. J. Choi, and C. K. Song, 2013: Influence of transboundary air pollutants from China on the high $PM_{10}$ episode in Seoul, Korea for the period October 16-20, 2008. Atmos. Environ., 77, 430-439, doi:10.1016/j.atmosenv.2013.05.006.   DOI
29 Lee, Y., and Coauthors, 2015: Characteristics of particulate carbon in the Ambient Air in the Korean Peninsula. J. Korean Soc. Atmos. Environ., 31, 330-344, doi:10.5572/KOSAE.2015.31.4.330 (in Korean with English abstract).   DOI
30 Li, K., and I. Hwang, 2015: Characteristics of $PM_{2.5}$ in Gyeongsan using statistical analysis. J. Korean Soc. Atmos. Environ., 31, 520-529, doi:10.5572/KOSAE.2015.31.6.520 (in Korean with English abstract).   DOI
31 Lin, J. J., and H. S. Tai, 2001: Concentrations and distributions of carbonaceous species in ambient particles in kaohsiung city, Taiwan. Atmos. Environ., 35, 2627-2636, doi:10.1016/S1352-2310(00)00444-1.   DOI
32 Park, S. S., D. Harrison, J. P. Pancras, and J. M. Ondov, 2005: Highly time-resolved organic and elemental carbon measurements at the Baltimore Supersite in 2002. J. Geophys. Res., 110, D07S06, doi:10.1029/2004JD004610.
33 Liu, D., J. Abuduwaili, J. Lei, G. Wu, and D. Gui, 2011: Wind erosion of saline playa sediments and its ecological effects in Ebinur Lake, Xinjiang, China. Environ. Earth Sci., 63, 241-250, doi:10.1007/s12665-010-0690-4.   DOI
34 Lucey, D., L. Hadjiiski, P. K. Hopke, J. R. Scudlark, and T. Church, 2001: Identification of sources of pollutants in precipitation measured at the Mid-Atlantic US coast using Potential Source Contribution Function (PSCF). Atmos. Environ., 35, 3979-3986, doi:10.1016/S1352-2310(01)00185-6.   DOI
35 NIOSH, A., 1996: Elemental carbon (Diesel Exhaust). Method 5040 issue 1, NIOSH Manual of Analytical Methods, fourth Ed., National Institute of Occupational Safety and Health, 9 pp.
36 Park, S. S., S. A. Jung, B. J. Gong, S. Y. Cho, and S. J. Lee, 2013a: Characteristics of $PM_{2.5}$ haze episodes revealed by highly time-resolved measurements at an air pollution monitoring Supersite in Korea. Aerosol Air Qual. Res., 13, 957-976, doi:10.4209/aaqr.2012.07.0184.
37 Park, S. U., and E. H. Lee, 2004: Parameterization of Asian Dust (Hwangsa) particle-size distributions for use in dust emission models. Atmos. Environ., 38, 2155-2162, doi:10.1016/j.atmosenv.2004.01.024.   DOI
38 Park, S. U., J. H. Cho, and M. S. Park, 2013b: Analyses of high aerosol concentration events (dense haze/mist) occurred in East Asia during 10-16 January 2013 using the data simulated by the Aerosol Modeling System. Int. J. Chem., 2, 10-26.
39 Polissar, A. V., P. K. Hopke, and J. M. Harris, 2001: Source regions for atmospheric aerosol measured at Barrow, Alaska. Environ. Sci. Technol., 35, 4214-4226, doi:10.1021/es0107529.   DOI
40 Poirot, R. L., P. R. Wishinski, P. K. Hopke, and A. V. Polissar, 2001: Comparative application of multiple receptor methods to identify aerosol sources in Northern Vermont. Environ. Sci. Technol., 35, 4622-4636, doi:10.1021/es010588p.   DOI
41 Rattigan, O., H. Felton, M. Bae, J. Schwab, and K. Demerjian, 2010: Multi-year hourly $PM_{2.5}$ carbon measurements in New York: Diurnal, day of week and seasonal patterns. Atmos. Environ., 44, 2043-2053, doi:10.1016/j.atmosenv.2010.01.019.   DOI
42 Saarikoski, S., H. Timonen, K. Saarnio, M. Aurela, L. Jarvi, P. Keronen, V. M. Kerminen, and R. Hillamo, 2008: Sources of organic carbon in fine particulate matter in northern European urban air. Atmos. Chem. Phys., 8, 6281-6295.   DOI
43 Safai, P., M. Raju, P. S. P. Rao, and G. Pandithurai, 2014: Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance. Atmos. Environ., 92, 493-500, doi:10.1016/j.atmosenv.2014.04.055.   DOI
44 Sandrini, S., and Coauthors, 2014: Spatial and seasonal variability of carbonaceous aerosol across Italy. Atmos. Environ., 99, 587-598, doi:10.1016/j.atmosenv.2014.10.032.   DOI
45 Seinfeld, J. H., and S. N. Pandis, 2012: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley and Sons, 628-690.
46 Burnett, R. T., and Coauthors, 2014: An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health. Perspect., 122, 397-403, doi:10.1289/ehp.1307049.
47 Shin, S. A., J. S. Han, Y. D. Hong, J. Y. Ahn, K. J. Moon, S. J. Lee, and S. D. Kim, 2005: Chemical composition and features of Asian dust observed in Korea (2000-2002). J. Korean Soc. Atmos. Environ., 21, 119-129 (in Korean with English abstract).
48 Shon, Z. H., K. H. Kim, S. K. Song, K. Jung, N. J. Kim, and J. B. Lee, 2012: Relationship between water-soluble ions in $PM_{2.5}$ and their precursor gases in Seoul megacity. Atmos. Environ., 59, 540-550, doi:10.1016/j.atmosenv.2012.04.033.   DOI
49 Anderson, J. O., J. G. Thundiyil, and A. Stolbach, 2012: Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol., 8, 166-175, doi:10.1007/s13181-011-0203-1.   DOI
50 Brankov, E., R. F. Henry, K. L. Civerolo, W. Hao, S. T. Rao, P. K. Misra, R. Bloxam, and N. Reid, 2003: Assessing the effects of transboundary ozone pollution between Ontario, Canada and New York, USA. Environ. Pollut., 123, 403-411, doi:10.1016/S0269-7491(03)00017-4.   DOI
51 Turpin, B. J., and J. J. Huntzicker, 1995: Identification of secondary aerosol episodes and secondary organic aerosol concentrations during SCAQS. Atmos. Environ., 29, 3527-3544.   DOI
52 Son, S., M. Bae, and S. Park, 2015: Chemical characteristics and formation pathways of Humic Like Substances (HULIS) in $PM_{2.5}$ in an Urban Area. J. Korean Soc. Atmos. Environ., 31, 239-254, doi:10.5572/KOSAE.2015.31.3.239 (in Korean with English abstract).   DOI
53 Szidat, S., M. Ruff, N. Perron, L. Wacker, H. A. Synal, M. Hallquist, A. S. Shannigrahi, K. E. Yttri, C. Dye, and D. Simpson, 2009: Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Goteborg, Sweden. Atmos. Chem. Phys., 9, 1521-1535, doi:10.5194/acp-9-1521-2009.
54 Turpin, B. J., and J. J. Huntzicker, 1991: Secondary formation of organic aerosol in the Los Angeles Basin: A descriptive analysis of organic and elemental carbon concentrations. Atmos. Environ., 25, 207-215.   DOI
55 Wang, X., D. L. Mauzerall, Y. Hu, A. G. Russell, E. D. Larson, J. H. Woo, D. G. Streets, and A. Guenther, 2005: A high-resolution emission inventory for eastern China in 2000 and three scenarios for 2020. Atmos. Environ., 39, 5917-5933, doi:10.1016/j.atmosenv.2005.06.051.   DOI
56 Xiao, S., and Coauthors, 2014: Long-term trends in visibility and impacts of aerosol composition on visibility impairment in Baoji, China. Atmos. Res., 149, 88-95, doi:10.1016/j.atmosres.2014.06.006.   DOI
57 Cao, J. J., F. Wu, J. C. Chow, S. C. Lee, Y. Li, S. W. Chen, Z. S. An, K. K. Fung, J. G. Watson, C. S. Zhu, and S. X. Liu, 2005: Characterization and source apportionment of atmospheric organic and elemental carbon during Fall and Winter of 2003 in Xi'an, China. Atmos. Chem. Phys., 5, 3127-3137.   DOI
58 Cheng, S., L. Yang, X. Zhou, Z. Wang, Y. Zhou, X. Gao, W. Nie, X. Wang, P. Xu, and W. Wang, 2011: Evaluating $PM_{2.5}$ ionic components and source apportionment in Jinan, China 2004 to 2008 using trajectory statistical methods. J. Environ. Monit., 13, 1662-1671, doi:10.1039/C0EM00756K.   DOI
59 Watson, J. G., L. W. A. Chen, J. C. Chow, P. Doraiswamy, and D. H. Lowenthal, 2008: Source apportionment: Findings from the US supersites program. J. Air Waste Manage. Assoc., 58, 265-288, doi:10.3155/1047-3289.58.2.265.   DOI
60 WHO, 2014: Burden of Disease from Ambient Air Pollution for 2012, 3 pp [Available online at http://www.who.int/phe/health_topics/outdoorair/databases/AAP_BoD_results_March2014.pdf].