• Title/Summary/Keyword: second-order prediction

Search Result 313, Processing Time 0.042 seconds

Design of a machine learning based mobile application with GPS, mobile sensors, public GIS: real time prediction on personal daily routes

  • Shin, Hyunkyung
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.27-39
    • /
    • 2018
  • Since the global positioning system (GPS) has been included in mobile devices (e.g., for car navigation, in smartphones, and in smart watches), the impact of personal GPS log data on daily life has been unprecedented. For example, such log data have been used to solve public problems, such as mass transit traffic patterns, finding optimum travelers' routes, and determining prospective business zones. However, a real-time analysis technique for GPS log data has been unattainable due to theoretical limitations. We introduced a machine learning model in order to resolve the limitation. In this paper presents a new, three-stage real-time prediction model for a person's daily route activity. In the first stage, a machine learning-based clustering algorithm is adopted for place detection. The training data set was a personal GPS tracking history. In the second stage, prediction of a new person's transient mode is studied. In the third stage, to represent the person's activity on those daily routes, inference rules are applied.

A Novel Second Order Radial Basis Function Neural Network Technique for Enhanced Load Forecasting of Photovoltaic Power Systems

  • Farhat, Arwa Ben;Chandel, Shyam.Singh;Woo, Wai Lok;Adnene, Cherif
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.77-87
    • /
    • 2021
  • In this study, a novel improved second order Radial Basis Function Neural Network based method with excellent scheduling capabilities is used for the dynamic prediction of short and long-term energy required applications. The effectiveness and the reliability of the algorithm are evaluated using training operations with New England-ISO database. The dynamic prediction algorithm is implemented in Matlab and the computation of mean absolute error and mean absolute percent error, and training time for the forecasted load, are determined. The results show the impact of temperature and other input parameters on the accuracy of solar Photovoltaic load forecasting. The mean absolute percent error is found to be between 1% to 3% and the training time is evaluated from 3s to 10s. The results are also compared with the previous studies, which show that this new method predicts short and long-term load better than sigmoidal neural network and bagged regression trees. The forecasted energy is found to be the nearest to the correct values as given by England ISO database, which shows that the method can be used reliably for short and long-term load forecasting of any electrical system.

Second-order statistics of natural frequencies of smart laminated composite plates with random material properties

  • Singh, B.N.;Umrao, Atul;Shukla, K.K.;Vyas, N.
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.19-34
    • /
    • 2008
  • Nowadays developments in the field of laminated composite structures with piezoelectric have attracted significant attention of researchers due to their wide range of applications in engineering such as sensors, actuators, vibration suppression, shape control, noise attenuation and precision positioning. Due to large number of parameters associated with its manufacturing and fabrication, composite structures with piezoelectric display a considerable amount of uncertainty in their material properties. The present work investigates the effect of the uncertainty on the free vibration response of piezoelectric laminated composite plate. The lamina material properties have been modeled as independent random variables for accurate prediction of the system behavior. System equations have been derived using higher order shear deformation theory. A finite element method in conjunction with Monte Carlo simulation is employed to obtain the secondorder statistics of the natural frequencies. Typical results are presented for all edges simply supported piezoelectric laminated composite plates to show the influence of scattering in material properties on the second order statistics of the natural frequencies. The results have been compared with those available in literature.

Chaos in PID Controlled Nonlinear Systems

  • Ablay, Gunyaz
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1843-1850
    • /
    • 2015
  • Controlling nonlinear systems with linear feedback control methods can lead to chaotic behaviors. Order increase in system dynamics due to integral control and control parameter variations in PID controlled nonlinear systems are studied for possible chaos regions in the closed-loop system dynamics. The Lur’e form of the feedback systems are analyzed with Routh’s stability criterion and describing function analysis for chaos prediction. Several novel chaotic systems are generated from second-order nonlinear systems including the simplest continuous-time chaotic system. Analytical and numerical results are provided to verify the existence of the chaotic dynamics.

BJRNAFold: Prediction of RNA Secondary Structure Base on Constraint Parameters

  • Li, Wuju;Ying, Xiaomin
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.287-293
    • /
    • 2005
  • Predicting RNA secondary structure as accurately as possible is very important in functional analysis of RNA molecules. However, different prediction methods and related parameters including terminal GU pair of helices, minimum length of helices, and free energy systems often give different prediction results for the same RNA sequence. Then, which structure is more important than the others? i.e. which combinations of the methods and related parameters are the optimal? In order to investigate above problems, first, three prediction methods, namely, random stacking of helical regions (RS), helical regions distribution (HD), and Zuker's minimum free energy algorithm (ZMFE) were compared by taking 1139 tRNA sequences from Rfam database as the samples with different combinations of parameters. The optimal parameters are derived. Second, Zuker's dynamic programming method for prediction of RNA secondary structure was revised using the above optimal parameters and related software BJRNAFold was developed. Third, the effects of short-range interaction were studied. The results indicated that the prediction accuracy would be improved much if proper short-range factor were introduced. But the optimal short-range factor was difficult to determine. A user-adjustable parameter for short-range factor was introduced in BJRNAFold software.

  • PDF

Heart Attack Prediction using Neural Network and Different Online Learning Methods

  • Antar, Rayana Khaled;ALotaibi, Shouq Talal;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.77-88
    • /
    • 2021
  • Heart Failure represents a critical pathological case that is challenging to predict and discover at an early age, with a notable increase in morbidity and mortality. Machine Learning and Neural Network techniques play a crucial role in predicting heart attacks, diseases and more. These techniques give valuable perspectives for clinicians who may then adjust their diagnosis for each individual patient. This paper evaluated neural network models for heart attacks predictions. Several online learning methods were investigated to automatically and accurately predict heart attacks. The UCI dataset was used in this work to train and evaluate First Order and Second Order Online Learning methods; namely Backpropagation, Delta bar Delta, Levenberg Marquardt and QuickProp learning methods. An optimizer technique was also used to minimize the random noise in the database. A regularization concept was employed to further improve the generalization of the model. Results show that a three layers' NN model with a Backpropagation algorithm and Nadam optimizer achieved a promising accuracy for the heart attach prediction tasks.

Blind Adaptive Channel Estimation using Multichannel Linear Prediction (다채널 선형예측을 이용한 블라인드 적응 채널 추정)

  • 조주필;안경승;황지원
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.114-120
    • /
    • 2003
  • Blind channel estimation of communication channels is a problem of important current theoretical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the so-called, second order statistics techniques. This paper proposes the blind adaptive channel estimation using multichannel linear prediction method. Computer simulations are presented to compare the proposed algorithm with the existing ones.

  • PDF

Improved Prediction of Lift-off Acoustic Loads for a Launch Vehicle (발사체 이륙 시 음향 하중 예측 정확도 향상)

  • Choi, Sang-Hyeon;Ih, Jeong-Guon;Lee, Ik-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.207-210
    • /
    • 2014
  • This paper is concerned with the prediction of lift-off acoustic loads for a launch vehicle. Intense acoustic load is generated when a launch vehicle is lifted off, and it can induce vibrations of a launch vehicle which cause damage or malfunction of a launch vehicle and a satellite. Lift-off acoustic loads of NARO are predicted by the modified Eldred's second method and the result is compared with the measured data in flight test. The prediction shows similar peak and shape of spectrum to the test data, but some discrepancy can be observed due to the predicted margin. In order to reduce such discrepancy, the sound pressure levels with four source distribution assumptions are calculated. Also, the surface diffraction effects are considered in the predict ion of lift-off acoustic loads, and the predicted result is more similar to the test data.

  • PDF

Online Flow Prediction by Kalman Filter (Kalman Filter에 의한 Online 유출예측(流出豫測))

  • Lee, Won Hwan;Rhee, Young Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.57-65
    • /
    • 1986
  • The need of forecasting river flows arised whenever a river authority must make controls to protect the life and property from the flood and maintain the adequate flows for water use. This study is on the real time flood forecasting from the gauged and ungauged rainfall input and identification of second-order autoregressive(AR(2)) which is used as system model. A Kalman filter is used to obtain the values of the system parameters needed for the optimal control strategy. This system model was applied to the data at the Naiu gauging station in Young san river basin to check the accuracy and efficiency of prediction. One step ahead prediction is checked by stochastic analysis and the order of autoregressive model is proved to be satisfied, Discussions on interesting features of the model are presented.

  • PDF

Assessment of Coal Combustion Safety of DTF using Response Surface Method (반응표면법을 이용한 DTF의 석탄 연소 안전성 평가)

  • Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.8-13
    • /
    • 2015
  • The experimental design methodology was applied in the drop tube furnace (DTF) to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of DTF. The dependent variables such as burnout ratios (BOR) of coal and $CO/CO_2$ ratios were mathematically described as a function of three independent variables (coal particle size, carrier gas flow rate, wall temperature) being modeled by the use of the central composite design (CCD), and evaluated using a second-order polynomial multiple regression model. The prediction of BOR showed a high coefficient of determination (R2) value, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the simulation data. However, $CO/CO_2$ ratio had a big difference between calculated values and predicted values using conventional RSM, which might be mainly due to the dependent variable increses or decrease very steeply, and hence the second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, $CO/CO_2$ ratio was taken as common logarithms and worked again with RSM. The application of logarithms in the transformation of dependent variables showed that the accuracy was highly enhanced and predicted the simulation data well.