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ABSTRACT: Predicting RNA secondary structure as
accurately as possible is very important in functional
analysis of RNA molecules. However, different prediction
methods and related parameters including terminal GU pair
of helices, minimum length of helices, and free energy
systems often give different prediction results for the same
RNA sequence. Then, which structure is more important
than the others? i.e. which combinations of the methods and
related parameters are the optimal? In order to investigate
above problems, first, three prediction methods, namely,
random stacking of helical regions (RS), helical regions
distribution (HD), and Zuker’s minimum free energy
algorithm (ZMFE) were compared by taking 1139 tRNA
sequences from Rfam database as the samples with different
combinations of parameters. The optimal parameters are
derived. Second, Zuker’s dynamic programming method for
prediction of RNA secondary structure was revised using
the above optimal parameters and related software
BJRNAFold was developed. Third, the effects of
short-range interaction were studied. The results indicated
that the prediction accuracy would be improved much if
proper short-range factor were introduced. But the optimal
short-range factor was difficult to determine. A
user-adjustable parameter for short-range factor was
introduced in BJRNAFold software.

1 INTRODUCTION

RNA molecules play an important role in many biological
processes and knowing their structures is important in
understanding their functions. In view of the difficulties in
the experimental determination of RNA structures, the
theoretical methods for RNA secondary structure prediction
are often used. According to Higgs [1], there are four sorts
of prediction methods, which are dynamic programming
algorithms [2, 3], kinetic folding algorithms [4], genetic
algorithms [5] and comparative methods [6, 7, 8]. When a
set of phylogenetic-related RNA sequences are available,
comparative methods can be used to find the conservative
secondary structures. When there are only one or a few
known sequences for an RNA, the first three sorts of
methods can be used to predict RNA secondary structures.
Therefore, molecular biologists have several choices to
‘predict RNA secondary structures. But, when they face
different predicted structures for the same RNA sequence,
which structure is more rational? More generally, which
prediction method is better? In addition, several RNA
secondary structure prediction-related parameters can also
affect the prediction results, which include terminal GU pair
of helices, the minimum length of helices, and free energy
systems [9, 10]. These parameters are the basic parameters

in the field of prediction of RNA secondary structures. Then,
which combinations of parameters are the optimal?

In this study, the above problems are investigated
systematically. First, three prediction methods RS {11], HD
[12], and ZMFE [3,13] are compared by taking 1139 tRNA
sequences from Rfam database as the sample [14]. The
optimal parameters and their combinations were found (See
table 1 for detail information). For example, no matter
whether terminal GU pair of helices is permitted or not, the
best minimum length of helices for both RS and HD is 3
base pairs. Second, Zuker’s dynamic programming method
for RNA secondary structure prediction was revised using
the above optimal parameters and related software
BJRNAFold was developed. Compared to the RS method,
BJRNAFold not only provides higher prediction accuracy
for 1139 tRNA sequences, but also runs faster. It can be
used to fold long RNA sequence (<1500 n.t. at present). In
addition, both BJRNAFold and MZFE methods give the
near same prediction accuracy for 9 RNA families with
identity > 72. Therefore, the studies here provide an
alternative selection for molecular biologists to predict RNA
secondary structures.

2 DATA AND METHODS

2.1 RNA sequences

There are 350 RNA families in the database [14]. The RNA
families with the total number of seed sequences > 50
were used for the evaluation of prediction methods. The
number of such RNA families is 27. Because the sequence
length is too long for RF00010, RF00177, and RF00023
families, it has some difficulty to predict RNA secondary
structures using Mfold program in batch mode [13]. We
finally selected the rest 24 families for evaluation. The
detail information for these families was given in table 2.
For tRNA family (RF00005), even through there are 1139
tRNA sequences, the phylogenetic analysis only provides
957 cloverleaf structures. Therefore, in cloverleaf structure
based prediction accuracy calculation, we take 957 as the
denominator.

2.2 Free energy systems and free energy calculation

Four free energy systems T3.0, T25, T37, and T42 were
used. T3.0 (37°C) is the latest free energy system [10],
which was downloaded from Zuker’s web page [13]. T25,
T37, and T42 are correspondent to the temperature 25°C,
37°C and 42°C respectively [9]. In this study, multibranch
loops were assigned zero free energy (case I) or treated as
interior loops (case II) [3]. In addition, if the loop size of
hairpin, interior, or bulge >30, the free energy for these
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loops was defined as AG’(n)=AG"(30)+1.75RTIn(n/30), in
which # is the number of unpalred nucleotxdes in the loop, R

is the gas constant (1.987cal.mol” K™"), T is the temperature
inK (e.g. 298.15 K for 25°C) [18].

2.3 Definition of prediction accuracy for RNA secondary
structure

The prediction accuracy was defined as the ratio of the
number of correctly predicted base pairs to the known base
pairs from phylogenetic analysis. For tRNA sequences, we
also define it as the ratio of the correctly predicted
cloverleaf structures to the total number of cloverleaf
structures (957) from phylogenetic analysis at the same
time,

2.4 Prediction of RNA secondary structure based on
random stacking of helical regions (RS)

The basic assumption of RS is that the direction of RNA
folding is to lower the free energy of the forming structures,
but the final structures may not reach the minimum free
energy state. The structures are calculated using Monte
Carlo simulations. By repeating the simulations, we can
obtain many secondary structures for a given RNA sequence.
Among those structures, some maybe appear several times,
and some maybe appear many times. Here we take the
structure with the highest occurrence frequency as the
predicted structure. Another important parameter is the
number of simulations (i.e. how many secondary structures
should be calculated). According to our previous study [11,
12, 19], 100 simulations are enough for tRNA sequences.
With the increase of sequence length, the highest
frequencies of the structures will become very small.
Therefore, RS is only applicable for short RNA sequences.
But the validation of the mathematical model of high-level
expression of foreign genes [20] based on the RS method
demonstrated that the RS method is efficient and useful [21,
22].

2.5 Prediction of RNA secondary structure based on
helical regions distribution (HD)

There are three steps to predict RNA secondary structure.
First, the frequencies of helical regions are calculated from
a set of secondary structures generated by RS, and the
helical region with the highest frequency was added to the
current structure. Second, all incompatible helices to the
current structure are deleted from the helices list. Third, the
above two steps are repeated until no helices in the list.
Finally, we take the current structure as the predicted
structure, which is composed of the helices that appear most
frequently in the set of structures. When RNA sequence is
too long (>200), the HD method will become very slow.

2.6 Zuker’s minimum free energy method (ZMFE)
Zuker’s method can find optimal and sub-optimal secondary
structures for a given RNA sequence. The related program
is Mfold [13]. In this study, we only consider the minimum
free energy secondary structure predicted by Mfold.

2.7 Optimal parameters for RNA secondary structure
prediction

In order to obtain the optimal parameters for prediction of
RNA secondary structure, the secondary structures of 1139
tRNA sequences were predicted using three methods RS,
HD, and ZMFE. Through the comparison of prediction

results, the optimal parameters were found: terminal GU
pair of helical regions was prohibited, the best minimum
length of helical regions was 3 bp, and T25 was the best free
energy system. These are the basis for the following revised
dynamic programming methods. See results 1 for detail
comparison information.

2.8 Revised dynamic programming methods for
prediction of RNA secondary structure

Zuker’s dynamic programming method was revised using
the above optimal parameters. The basic steps for the
minimum free energy calculation in revised algorithm are
similar to those for the ZMFE method. Two matrix V,,x, and
W.xn are used, in which » is the given RNA sequence length.
For any two bases i and j (i<j), V(i,j) stores the minimum
free energy value for the fragment [i,j] when i and j, i+1 and
j-1, and i+2 and j-2 are paired. Here we only consider G-C,
A-U, or G-U base pair. Furthermore, terminal G-U pair of
helices is not allowed. /(i j) saves the minimum free energy
information for the fragment [i,j] no matter whether i and j,
i+1 and j-1, and i+2 and j-2 are base paired or not. At first,
we assign initial values for the matrix V" and W (e.g. 10000).
Next, we consider the following two cases. The first case is
j - i=8. The second is j - i>8.

For the first case (§ - i=8), if i and j, i+1 and j-1, and i+2
and j-2 are paired, a potential hairpin loop structure will be
formed. Based on free energy system, Vi), V(i+1,j-1) and
V(i+2j-2) will be assigned corresponding free energy.
W(ij), W(i+l1j-1) and W(i+2j-2) will be given the same
values. If one of i and j, i+1 and j-1, or i+2 and j-2 are not
paired, V(ij), V(i+1j-1), V(i+2j-2), W(ij), W(i+1j-1) and
W(i+2j-2) will keep the initial values.

For the second case (j-i>8), if i and j, i+1 and j-1, and i+2
and j-2 are base paired, V(ij) is calculated as follows

E,=FE_Hairpin(i,j) 1)

(Hairpin structure, i+3 and j-3 is not allowed to pair)

E,=FE_Helix(i,j) 2)

(Helix structure, i+3 and j-3 is allowed to pair)

E;=FE_Interior(i,j,i j ) (3)

(Interior loop structure, iandj,i+1andj-1andi+2 and
j-2 are paired. i -i>1 and j-j >1)

E.=FE_Buldge(i,j,i,j) (4)

(Buldge loop structure, iandj,i+l andj-1andi+2 and
j-2 are paired. i -i=1 or j=j"=1, but not both)

E=FE_Multi(i,j) %)

(Multibranch loop structure, more than one helical
regions are extended from the fragment [i,j])

V(i,j)=min(E,, E,, E;, E4, Es) 6)
W(i,j) will be calculated as follows

E¢=V(ij) )
E=W(i,j—1) t)
Ee=W(i+1,j) ®

Eo=min(W(i,m)+W(m+1,j)—38) (i<m<j) (10)

(6 is the short-range factor)

W(i,j)= min(Es, E7, Es, Eg) (11)
When j-i increases gradually from 8 to sequence length—1,
Vi j) and W(ij) will be filled the minimum free energy for
the fragment [i,j]. Finally, W(1,n) stores the minimum free
energy for the whole RNA sequence. The recursive
procedures are used to search the minimum free energy
secondary structure. In addition, in formula (10), a
short-range factor & is introduced. When & is given a
positive value, the sub-structure from E, will support the
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short-range  interaction. Otherwise, the long-range
interaction will be supported. The effects of the & will be
given in the results.

2.9 Database construction and evaluation of RNA
secondary structures

Two RNA secondary structure databases for each studied
RNA families were constructed. First database is derived
from phylogenetic analysis (PRNA2D). Second is created
using prediction results from Mfold server (MRNA2D). All
sequences for each family were submitted to Mfold server,
and related minimum free energy secondary structures were
used to construct the MRNA2D. Based on PRAN2D and
MRNA2D, the prediction accuracies for Mfold were
calculated. Finally, the prediction accuracies for each family
were also calculated by comparing the prediction results
from BJRNAFold to the corresponding secondary structures
in PRNA2D database.

3 RESULTS

3.1 Comparison of three prediction methods RS, HD,
and ZMFE

Based on the prediction results for 1139 tRNA sequences,
three prediction methods RS, HD, and ZMFE were
compared. During the prediction, no priori information was
used. For RS method, the structures with the highest
frequencies were taken as the predicted structures (in 100
simulations). For HD method, only one structure was
predicted for each sequence. For ZMFE, only minimum free
energy secondary structure was considered. From table 1,
we can see clearly that the prediction accuracies are strongly
related to the different prediction methods and related
parameters. Furthermore, following conclusions were
obtained. First, for both RS and HD, the prediction
accuracies with terminal GU pair of helices prohibited are
higher than the corresponding accuracies with GU pair of
helices permitted. Second, for most combinations of
parameters (i.e. each row in Table 1), the prediction
accuracies from RS are higher than those from HD. Third, if
terminal GU pair of helices is permitted, the best free
energy system is T3.0; If terminal GU pair of helices is
prohibited, the best free energy system is T25. Fourth, no
matter whether terminal GU pair of helices is permitted or
not, the best minimum length of helices is 3 bp for both RS
and HD. Fifth, for the same method and parameter
combinations, giving multibranch loops zero free energy
will generate better prediction results than taking them as
interior loops. Sixth, the optimal parameter combinations
were found for both RS and HD. The related parameters are
free energy system T25, no terminal GU pair of helices and
the minimum length of helical regions 3 bp. The
corresponding  prediction accuracies are 79.46% and
78.29% of known base pairs or 54.65% (523/957) and
52.14% (499/957) of known cloverleaf structures
respectively, which are far larger than 66.71% or 32.92%
(315/957) from MZFE. Therefore, the RS outperforms HD
and MZFE methods in some cases. But the following two
shortcomings make the RS inappropriate for longer
sequences. First, the frequencies of dominant structures will
become very small with the sequence length > 120. Second,
it is time consuming. In order to overcome the shortcomings

of the RS method, Zuker’s dynamic programming method
for prediction of RNA secondary structure was revised
using above optimized parameters and related program
BJRNAFold was developed.

3.2 Prediction of tRNA secondary structures using
BJRNAFold

The secondary structures of all 1139 tRNA sequences were
predicted using BJRNAFold. The results indicated that the
prediction accuracy was 76.13% of known base pairs or
41.80% (400/957) of known cloverleaf structures when the
multibranch loops were given zero free energy. When the
multibranch loops were treated as interior loops, the
prediction accuracy was 82.01% of known base pairs or
56.53% (541/957) of known cloverleaf structures. Therefore,
BJRNAFold outperforms RS method for tRNA sequences.
Moreover, the running speed for BIJRNAFold is much faster
than RS method. BIRNAFold has the same time complexity
as MZFE.

3.3 Prediction of RNA secondary structures for 24 Rfam
members

The secondary structures for all sequences from 24 RNA
families were predicted using MFold and BJRNAFold. The
prediction accuracies for each family were calculated by
comparing the prediction results to the secondary structures
from phylogenetic analysis. The detail results were provided
in Table 2. From table 2, we can obtain the following results.
First, the average prediction accuracy for MFold is 73.06%
for all 24 RNA families. For BJRNAFold, the average
prediction accuracies 68.14% (case I) and 70.66% (case II)
are less than 73.06% (Mfold). Second, for the RNA families
with average identity > 72 (RF00250, RF00175, RF00260,
RF00229, RF00048, RF00026, RF00032, RF00002, and
RF00008), the average prediction accuracy is 72.69% for
MFold program. For BJRNAFold, the average prediction
accuracies are 71.61% (case I) and 72.88% (case II)
respectively. Both MFold and BJRNAFold provide near the
same prediction accuracies.

3.4 Effect of short-range factor

Short-range factor was introduced in formula 10. Different
values for short-range factor often lead to different
prediction accuracies. For example, we let & vary from 0.0
to 10.0 with the step size 0.1. For each & value, the
prediction accuracies for 1139 tRNA sequences were
calculated using the software BJRNAFold. The related
results were displayed in Figure 1. From Figure 1, we can
see that the prediction accuracies were improved with the
increase of 8. The maximum prediction accuracy 91.46% of
known base pairs or 89.24% (854/957) of known cloverleaf
structures was reached at §=3.7 and 4.25 respectively,
which was far larger than 79.46% of known base pairs or
54.65% (523/957) of known cloverleaf structures from the
RS method. After 8 = 4.25, the prediction accuracies
decreased with the increase of § value. Therefore, with the
introduction of proper § value, BJRNAFold give better
prediction accuracies. In fact, from table 2, we can see that
the introduction of proper short-range factor will also
improve prediction accuracies for other RNA families. But
present difficult point is how to determine the optimal
short-range factor. Therefore, we provide a user-adjustable
parameter for short-range factor in BIRNAFold program.
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4  DISCUSSIONS

In this study, we have finished the following works. First,
based on 1139 tRNA sequences from Rfam database, three
prediction methods RS, HD, and MZFE were compared.
The optimal parameters and their combinations were found.
Second, Zuker’s dynamic programming method was revised
using the above parameters. Third, an evaluation system for
RNA secondary structure prediction methods based on
phylogenetic-derived secondary structures from Rfam
database was constructed. Using this system, we can
evaluate the reliability of different prediction methods. In
order to correctly predict the secondary structures of known
RNA sequences, future studies will emphasize the following
two points.

First is the exact estimation of short-range factor. From
the prediction results, we find that the proper value of
short-range factor would lead to the significant
improvement of prediction accuracies. At present, we train
the short-range factor for each Rfam family. For new RNA
sequences, it is very difficult to find the optimal short-range
factors. It needs further study.

Second is to evaluate the different prediction methods
and related parameter combinations using the evaluation
system. At present, many prediction methods are presented
[13, 15, 16, 17]. When we face so many prediction methods,
we cannot help ask which method and related parameters is
the best. In this study, only RS, HD, and ZMFE were
compared. We intend to collect more prediction methods
and compare them. From this comparison, we can provide
the molecular biologists with the best methods for
prediction of RNA secondary structures.
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7 FIGURES

Figure 1: Relationship between prediction accuracy and short-range factor
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The relationship between the short-range factor and the prediction accuracy for 1139 tRNA sequences. The curve marked by
“CloverLeaf Structure” stands for the percentage of predicted cloverleaf structures to the known cloverleaf structures (957).
The curve marked by “Base Pairs™ represents the percentage of predicted base pairs to the known base pairs from
phylogenetic analysis. For cloverleaf structures, the maximum accuracy 89.24% (854/957) is reached at =4.25. For base pairs,
the maximum accuracy 91.50% is reached at §=3.70.
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