• Title/Summary/Keyword: second-order expansion

Search Result 323, Processing Time 0.027 seconds

Analysis of Mixed Mode Crack Extension in Anisotropic Solids (이방성재료내 혼합모드균열의 진전 해석)

  • 임원균;강석진;진영균
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.301-308
    • /
    • 2001
  • The problem of predicting crack propagation in anisotropic solids which is a subject of considerable practical importance is examined. The effect of the second term in the asymptotic expansion of the crack tip stress field on the direction of initial crack extension is made explicitly. We employ the normal stress ratio theory to determine values for the direction of initial crack extension. The theoretical analysis is performed for the wide range of the anisotropic material properties. It is shown that the use of second order term in the series expansion is essential for the accurate determination of crack growth direction in anisotropic solids.

  • PDF

Performance Analysis of Monopulse System Based on Second-Order Taylor Expansion of Two Variables in the Presence of an Additive Noise (부가성 잡음이 존재하는 모노펄스 시스템 성능의 2변수 2차 테일러 전개 기반 분석)

  • Ryu, Kyu-Tae;Ham, Hyeong-Woo;Lee, Joon-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2022
  • In this paper, it is shown how the performance of the monopulse algorithm in additive noise is evaluated. In the previous study, the performance analysis of the amplitude-comparison monopulse algorithm was conducted via the first-order and second-order Taylor expansion of four variables. By defining two new random variables from the four variables, it is shown that computational complexity associated with two random variables is much smaller than that associated with four random variables. Performance in terms of mean square error is analyzed from Monte-Carlo simulation. The scheme proposed in this paper is more efficient than that suggested in the previous study in terms of computational complexity. The expressions derived in this study can be utilized in getting analytic expressions of the mean square errors.

Nonlinear Fluid Forces on Hinged Wavemakers (힌지형 조파기에 작용하는 비선형 파력)

  • Kim, Tae-In;Rocbert T. Hudspeth
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.4
    • /
    • pp.208-222
    • /
    • 1990
  • The nonlinear hydrodynamic pressure force and moment on hinged wavemakers of variable-draft are presented. A closed-form solution (correct to second-order) for the nonlinear wavemaker boundary value problem has been obtained by employing the Stokes perturbation expansion scheme. The physical significance of the second-order contributions to the hydrodynamic pressure moment are examined in detail. Design curves are presented which demonstrate both the magnitude of the second-order nonlinearities and the effects of the variable-draft hinge height. The second-order contributions to the total hydrodynamic force and moment consist of a time-dependent and a steady part. The sum of the first and second-order pressure force and moment show a significant increase over those predicted by linear wavemaker theory. The second-order effects are shown to vary with both relative water depth and wave amplitude. The second-order dynamic effects are relatively more important for hinged wavemakers with shallower drafts.

  • PDF

A Study on the Characteristics of Mediation in Fashion Culture Contents Found in Transmedia - Focusing on Modern Fashion since the 20th Century - (트랜스미디어에 나타난 패션 문화 콘텐츠의 매개특성 연구 - 20세기 이후 현대 패션사를 중심으로 -)

  • Kim, Hyangja
    • Journal of the Korean Society of Costume
    • /
    • v.67 no.4
    • /
    • pp.131-152
    • /
    • 2017
  • The purpose of this study is to analyze modern fashion culture in the 20th century through changes in transmedia in order to better understand characteristics of fashion contents. The study also strived to identify the characteristics of remediation in modern fashion and media by exploring the cultural code, and use it to establish an integrated view. The subjects and the method of the study are as follows. First, the study analyzed the development of transmedia and fashion culture since the 20th century. Second, it identified the transitional characteristics of transmedia. Third, the study analyzed the characteristics of remediation in modern fashion culture by using the characteristics of mediation, which appeared with the transitional characteristics of transmedia. The study results are as follows. First, the types of remediation are 'borrowing,' 'Representation,' 'Expansion,' 'Refashion,' and 'Absorb.' In old and new media, each type can be aesthetically experienced in 'transparency,' opaqueness,' 'Hypermediacy,' and 'Immediacy.' Second, fashion culture can undergo a transformation from its original form to a second and a third iteration, and this process allows for possibility of an expansion of multiple plots and well-rounded character settings. This opens up the possibility for fashion consumer participation, and signifies a transition into an environment where expansion of time and space is possible. The third finding is the non-mediation of fashion objects. The mediating relationship between clothes and media is directly connected to the development of new media. The immersion of new media by fashion consumers has the characteristics of 'transparency'/'Non-mediation,' and the reinterpretation and reproduction of original fashion styles have the characteristics of 'opaqueness'/'Hyper-mediation.' Fourth, fashion culture has data variability. Through 'Borrowing,' 'Representation,' 'Expansion,' 'Remodeling,' and 'Absorption,' the cultural hierarchy of reproduced fashion forms a multi-layered integrated network. Mediation code, which repurposes fashion culture contents, also creates new media fashion through transmedia.

An Evaluation of the Second-order Approximation Method for Engineering Optimization (최적설계시 이차근사법의 수치성능 평가에 관한 연구)

  • 박영선;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.236-247
    • /
    • 1992
  • Optimization has been developed to minimize the cost function while satisfying constraints. Nonlinear Programming method is used as a tool for the optimization. Usually, cost and constraint function calculations are required in the engineering applications, but those calculations are extremely expensive. Especially, the function and sensitivity analyses cause a bottleneck in structural optimization which utilizes the Finite Element Method. Also, when the functions are quite noisy, the informations do not carry out proper role in the optimization process. An algorithm called "Second-order Approximation Method" has been proposed to overcome the difficulties recently. The cost and constraint functions are approximated by the second-order Taylor series expansion on a nominal points in the algorithm. An optimal design problem is defined with the approximated functions and the approximated problem is solved by a nonlinear programming numerical algorithm. The solution is included in a candidate point set which is evaluated for a new nominal point. Since the functions are approximated only by the function values, sensitivity informations are not needed. One-dimensional line search is unnecessary due to the fact that the nonlinear algorithm handles the approximated functions. In this research, the method is analyzed and the performance is evaluated. Several mathematical problems are created and some standard engineering problems are selected for the evaluation. Through numerical results, applicabilities of the algorithm to large scale and complex problems are presented.presented.

Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation

  • Galal, O.H.;El-Tahan, W.;El-Tawil, M.A.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.281-294
    • /
    • 2008
  • In this paper, linear elastic isotropic structures under the effects of both stochastic operators and stochastic excitations are studied. The analysis utilizes the spectral stochastic finite elements (SSFEM) with its two main expansions namely; Neumann and Homogeneous Chaos expansions. The random excitation and the random operator fields are assumed to be second order stochastic processes. The formulations are obtained for the system solution of the two dimensional problems of plane strain and plate bending structures under stochastic loading and relevant rigidity using the previously mentioned expansions. Two finite element programs were developed to incorporate such formulations. Two illustrative examples are introduced: the first is a reinforced concrete culvert with stochastic rigidity subjected to a stochastic load where the culvert is modeled as plane strain problem. The second example is a simply supported square reinforced concrete slab subjected to out of plane loading in which the slab flexural rigidity and the applied load are considered stochastic. In each of the two examples, the first two statistical moments of displacement are evaluated using both expansions. The probability density function of the structure response of each problem is obtained using Homogeneous Chaos expansion.

Temperature effect on spherical Couette flow of Oldroyd-B fluid

  • Hassan, A. Abu-El;Zidan, M.;Moussa, M.M.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.201-209
    • /
    • 2007
  • The present paper is concerned with non-isothermal spherical Couette flow of Oldroyd-B fluid in the annular region between two concentric spheres. The inner sphere rotates with a uniform angular velocity while the outer sphere is kept at rest. Moreover, the two spherical boundaries are maintained at fixed temperature values. Hence, the fluid is effect by two heat sources; namely, the viscous heating and the temperature gradient between the two spheres. The viscoelasticity of the fluid is assumed to dominate the inertia such that the latter can be neglected. An approximate analytical solution of the energy and momentum equations is obtained through the expansion of the dynamical fields in power series of Nahme number. The analysis show that, the temperature variation due to the external source appears in the zero order solution and its effect extends to the fluid velocity distribution up to present second order. Viscous heating contributes in the first and second order solutions. In contrast to isothermal case, a first order axial velocity and a second order stream function fields has been appeared. Moreover, at higher orders the temperature distribution depends on the gap width between the two spheres. Finally, there exist a thermal distribution of positive and negative values depend on their positions in the domain region between the two spheres.

AN ASYMPTOTIC FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION-DIFFUSION TYPE WITH DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1057-1069
    • /
    • 2008
  • We consider singularly perturbed Boundary Value Problems (BVPs) for third and fourth order Ordinary Differential Equations(ODEs) of convection-diffusion type with discontinuous source term and a small positive parameter multiplying the highest derivative. Because of the type of Boundary Conditions(BCs) imposed on these equations these problems can be transformed into weakly coupled systems. In this system, the first equation does not have the small parameter but the second contains it. In this paper a computational method named as 'An asymptotic finite element method' for solving these systems is presented. In this method we first find an zero order asymptotic approximation to the solution and then the system is decoupled by replacing the first component of the solution by this approximation in the second equation. Then the second equation is independently solved by a fitted mesh Finite Element Method (FEM). Numerical experiments support our theoritical results.

  • PDF

A Reversible Audio Watermarking Scheme

  • Kim, Hyoung-Joong;Sachnev, Vasiliy;Kim, Ki-Seob
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.5 no.1
    • /
    • pp.37-42
    • /
    • 2006
  • A reversible audio watermarking algorithm is presented in this paper. This algorithm transforms the audio signal with the integer wavelet transform first in order to enhance the correlation between neighbor audio samples. Audio signal has low correlation between neighbor samples, which makes it difficult to apply difference expansion scheme. Second, a novel difference expansion scheme is used to embed more data by reducing the size of location map. Therefore, the difference expansion scheme used in this paper theoretically secures high embedding capacity under low perceptual distortion. Experiments show that this scheme can hide large number of information bits and keeps high perceptual quality.

  • PDF

TRAVELING WAVE SOLUTIONS FOR HIGHER DIMENSIONAL NONLINEAR EVOLUTION EQUATIONS USING THE $(\frac{G'}{G})$- EXPANSION METHOD

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.383-395
    • /
    • 2010
  • In the present paper, we construct the traveling wave solutions involving parameters of nonlinear evolution equations in the mathematical physics via the (3+1)- dimensional potential- YTSF equation, the (3+1)- dimensional generalized shallow water equation, the (3+1)- dimensional Kadomtsev- Petviashvili equation, the (3+1)- dimensional modified KdV-Zakharov- Kuznetsev equation and the (3+1)- dimensional Jimbo-Miwa equation by using a simple method which is called the ($\frac{G'}{G}$)- expansion method, where $G\;=\;G(\xi)$ satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the solitary waves are derived from the travelling waves. The travelling wave solutions are expressed by hyperbolic, trigonometric and rational functions.