• Title/Summary/Keyword: second phase

Search Result 2,565, Processing Time 0.033 seconds

A Biotin-avidin Labeled Enzyme Immunoassay for the Quantitation of Serum TSH Using Protein-layered Solid Phase

  • Choi, Myung-Ja;Song, Eun-Young;Chung, Tai-Wha
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.231-235
    • /
    • 1998
  • A sensitive enzyme immunoassay for serum TSH has been developed utilizing the tight binding between biotin and avidin, and three layered protein polystyrene beads as solid phase. To increase binding capacity of TSH and sensitivity of the assay, the polystyrene beads were coated sequentially with mouse immunoglobulin as first layer, rabbit antimouse immunoglobulin as second layer and monoclonal anti-TSH as third layer. A serum sample was incubated simultaneously with a monoclonal anti-TSH immobilized polystyrene beads and a second monoclonal anti-TSH covalently attached to biotin. After washing, the antibody bound serum TSH-anti-TSH-biotin complex is reacted with horseradish peroxidase (HRP)-labeled avidin. Following second wash, the bound HRP activity was measured calorimetrically. Reproducible results were obtained within 4 hours for serum TSH in the range between $0{\mu}\textrm{IU}$ml and ${50}{\mu}\textrm{IU}$ml with detection limit of $0.1{\mu}\textrm{IU}$ per test.

  • PDF

Efficient quasi-phase-matched second harmonic generation using ferroelastically induced periodic ferroelectric domains in $RbTiOAsO_4$ crystals ($RbTiOAsO_4$ 결정의 주기적인 강탄성-강유전 다분역 구조를 이용한 효율적인 준위상 정합 이차 조화파 발생)

  • Lee Su Seok;Im Min Ho;Yang Yu Sin;Yun Chun Seop;Im Ae Ran;Jo Yong Chan;Jeong Se Yeong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.232-233
    • /
    • 2003
  • Quasi-phase-match (QPM) can be realized by means of one-dimensional spatial modulation of second-order nonlinear susceptibility and has advantages over the conventional bulk phase-matching method because QPM can not only utilize the largest component of second-order nonlinear susceptibility tensor, but also can circumvent walk-off effect. (omitted)

  • PDF

A Quadrature VCO Exploiting Direct Back-Gate Second Harmonic Coupling

  • Oh, Nam-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.134-137
    • /
    • 2008
  • This paper proposes a novel quadrature VCO(QVCO) based on direct back-gate second harmonic coupling. The QVCO directly couples the current sources of the conventional LC VCOs through the back-gate instead of front-gate to generate quadrature signals. By the second harmonic injection locking, the two LC VCOs can generate quadrature signals without using on-chip transformer, or stability problem that is inherent in the direct front-gate second harmonic coupling. The proposed QVCO is implemented in $0.18{\mu}m$ CMOS technology operating at 2 GHz with 5.0 mA core current consumption from 1.8 V power supply. The measured phase noise of the proposed QVCO is - 63 dBc/Hz at 10 kHz offset, -95 dBc/Hz at 100 kHz offset, and -116 dBc/Hz at 1 MHz offset from the 2 GHz output frequency, respectively. The calculated figure of merit(FOM) is about -174 dBc/Hz at 1 MHz offset. The measured image band rejection is 46 dB which corresponds to the phase error of $0.6^{\circ}$.

Effect of Al Content on Phase Transformation of Rapidly Solidified Binary Ti-Al Alloys

  • Oh, Chang-Sup;Kim, Sang-Wook;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.8-11
    • /
    • 2017
  • Binary Ti-Al alloys containing 50 to 60 atomic percent aluminum are rapidly solidified by hammer anvil method under an argon atmosphere. Constituent phases in each alloy are identified by X-ray diffractometry and microstructures of the alloys are investigated using a transmission electron microscope. In alloys with aluminum content between 50 and 54 percent, a second phase exists besides TiAl(${\gamma}$); this second phase is identified as $Ti_3Al$(${\alpha}2$). The ${\alpha}2$ phase is observed in two types of morphology. One is as fine lamellar alternating with ${\gamma}$ and the other is as a particle. It is concluded that the existence of a metastable phase with the morphologies stated above should arise from a higher quenching rate attained by the hammer anvil method as compared to the conventional roll or splat-quench method. Implications of the above observation are discussed with respect to the phase relations in the Ti-Al binary system; these implications are still controversial in many respects.

A Fast and Robust Grid Synchronization Algorithm of a Three-phase Converters under Unbalanced and Distorted Utility Voltages

  • Kim, Kwang-Seob;Hyun, Dong-Seok;Kim, Rae-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1101-1107
    • /
    • 2017
  • In this paper, a robust and fast grid synchronization method of a three-phase power converter is proposed. The amplitude and phase information of grid voltages are essential for power converters to be properly connected into the utility. The phase-lock-loop in synchronous reference frame has been widely adopted for the three-phase converter system since it shows a satisfactory performance under balanced grid voltages. However, power converters often operate under abnormal grid conditions, i.e. unbalanced by grid faults and frequency variations, and thus a proper active and reactive power control cannot be guaranteed. The proposed method adopts a second order generalized integrator in synchronous reference frame to detect positive sequence components under unbalanced grid voltages. The proposed method has a fast and robust performance due to its higher gain and frequency adaptive capability. Simulation and experimental results show the verification of the proposed synchronization algorithm and the effectiveness to detect positive sequence voltage.

Uncertainty and sensitivity analysis in reactivity-initiated accident fuel modeling: synthesis of organisation for economic co-operation and development (OECD)/nuclear energy agency (NEA) benchmark on reactivity-initiated accident codes phase-II

  • Marchand, Olivier;Zhang, Jinzhao;Cherubini, Marco
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.280-291
    • /
    • 2018
  • In the framework of OECD/NEA Working Group on Fuel Safety, a RIA fuel-rod-code Benchmark Phase I was organized in 2010-2013. It consisted of four experiments on highly irradiated fuel rodlets tested under different experimental conditions. This benchmark revealed the need to better understand the basic models incorporated in each code for realistic simulation of the complicated integral RIA tests with high burnup fuel rods. A second phase of the benchmark (Phase II) was thus launched early in 2014, which has been organized in two complementary activities: (1) comparison of the results of different simulations on simplified cases in order to provide additional bases for understanding the differences in modelling of the concerned phenomena; (2) assessment of the uncertainty of the results. The present paper provides a summary and conclusions of the second activity of the Benchmark Phase II, which is based on the input uncertainty propagation methodology. The main conclusion is that uncertainties cannot fully explain the difference between the code predictions. Finally, based on the RIA benchmark Phase-I and Phase-II conclusions, some recommendations are made.

Sliding Mode Control of a New Wind-Based Isolated Three-Phase Induction Generator System with Constant Frequency and Adjustable Output Voltage

  • Moradian, Mohammadreza;Soltani, Jafar
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.675-684
    • /
    • 2016
  • This paper presents a new stand-alone wind-based induction generator system with constant frequency and adjustable output voltage. The proposed generator consists of a six-phase cage-rotor induction machine with two separate three-phase balanced stator windings and a three-phase space vector pulse width modulation inverter that operates as a static synchronous compensator (STATCOM). The first stator winding is fed by the STATCOM and used to excite the machine while the second stator winding is connected to the generator external load. The main frequency of the STATCOM is determined to be constant and equal to the load-requested frequency. The generator output frequency is independent of the load power demand and its prime mover speed because the frequency of the induced emf in the second stator winding is the same as this constant frequency. A sliding mode control (SMC) is developed to regulate the generator output voltage. A second SMC is used to force the zero active power exchanged between the machine and the STATCOM. Some simulation and experimental results are presented to prove the validity and effectiveness of the proposed generator system.

Phase Distribution, Microstructure, and Electrical Characteristics of NASICON Compounds

  • N.H. Cho;Kang, Hee-Bok;Kim, Y.H.
    • The Korean Journal of Ceramics
    • /
    • v.1 no.4
    • /
    • pp.179-184
    • /
    • 1995
  • Sodium superionic conductor (NASICON) compounds were prepared. The effects of sintering temperature and cooling rate on the formation and the distribution of crystalline NASICON and $ZrO_3$ second phase were investigated. In the von Alpen-type composition, the $ZrO_2$ second phase is in thermal equilibrium with the crystalline NASICON above $1320^{\circ}C$, but when cooled through 1260-$1320^{\circ}C$ crystalline NASICON was formed by reaction between $ZrO_2$ and liquid phase. Very slow cooling ($1^{\circ}C$/hr) to $1260^{\circ}C$ from sintering temperature decreased the amount of sodium which prevents the formation of the crystalline NASICON resulted high number of $ZrO_2$ grains near the surface of some sintered bodies. Maximum electrical conductivity of 0.200 ohm-1cm-1 was obtained at $300^{\circ}C$ for well-sintered samples with little $ZrO_3$. On the other hand, low conductivities were obtained for rapid-cooled samples which have less dense microstructure.

  • PDF

Acute Systemic Infusion of Bupropion Decrease Formalin Induced Pain Behavior in Rat

  • Naderi, Somayyeh;Pakdel, Firouz Ghaderi;Osalou, Mostafa Ashrafi;Cankurt, Ulker
    • The Korean Journal of Pain
    • /
    • v.27 no.2
    • /
    • pp.118-124
    • /
    • 2014
  • Background: The chronic pain can disturb physical, psychological, and social performances. Analgesic agents are widely used but some antidepressants (ADs) showed analgesia also. Bupropion is using for smoke cessation but it can change morphine withdrawal signs such as pain. This study tested the acute systemic effect of bupropion on formalin induced pain behavior in rats. Methods: Wistar male healthy rats were divided into 7 groups (control, sham, and 5 treated groups with 10, 30, 90, 120, and 200 mg/kg of bupropion, i.p.). The bupropion injected 3 hours prior to formalin induced pain behavior. Formalin (50 ${\mu}l$, 2.5%) was injected subcutaneously in dorsal region of right hindpaw in all animals. Nociceptive signs were observed continuously on-line and off-line each minute. Common pain scoring was used for pain assessment. Results: The analysis of data by one-way ANOVA showed that bupropion can reduce pain scores in the second phase but not in first phase. Bupropion decreased the licking/biting duration significantly in first and second phase of formalin test. Conclusions: The results showed that bupropion has analgesic effects at systemic application. The change of second phase of the pain behavior was significant and it revealed that central mechanisms involve in bupropion analgesia.

Ductile fracture simulation using phase field approach under higher order regime

  • Nitin Khandelwal;Ramachandra A. Murthy
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.199-211
    • /
    • 2024
  • The loading capacity of engineering structures/components reduces after the initiation and propagation of crack eventually leads to the final failure. Hence, it becomes essential to deal with the crack and its effects at the design and simulation stages itself, by detecting the prone area of the fracture. The phase-field (PF) method has been accepted widely in simulating fracture problems in complex geometries. However, most of the PF methods are formulated with second order continuity theoryinvolving C0 continuity. In the present study, PF method based on fourth-order (i.e., higher order) theory, maintaining C1 continuity has been proposed for ductile fracture simulation. The formulation includes fourth-order derivative terms of phase field variable, varying between 0 and 1. Applications of fourth-order PF theory to ductile fracture simulation resulted in novelty in this area. The proposed formulation is numerically solved using a two-dimensional finite element (FE) framework in 3-layered manner system. The solutions thus obtained from the proposed fourth order theory for different benchmark problems portray the improvement in the accuracy of the numerical results and are well matched with experimental results available in the literature. These results are also compared with second-order PF theory and a comparison study demonstrated the robustness of the proposed model in capturing ductile behaviour close to experimental observations.