Phase Distribution, Microstructure, and Electrical Characteristics of NASICON Compounds

  • N.H. Cho (Dept. of Ceram. Eng., Inha Univ) ;
  • Kang, Hee-Bok (Division of Ceram., Korea Institute of Sci. and Tech., P.O. Box 131, Cheongryang, Seoul) ;
  • Kim, Y.H. (Division of Ceram., Korea Institute of Sci. and Tech., P.O. Box 131, Cheongryang, Seoul)
  • Published : 1995.12.01

Abstract

Sodium superionic conductor (NASICON) compounds were prepared. The effects of sintering temperature and cooling rate on the formation and the distribution of crystalline NASICON and $ZrO_3$ second phase were investigated. In the von Alpen-type composition, the $ZrO_2$ second phase is in thermal equilibrium with the crystalline NASICON above $1320^{\circ}C$, but when cooled through 1260-$1320^{\circ}C$ crystalline NASICON was formed by reaction between $ZrO_2$ and liquid phase. Very slow cooling ($1^{\circ}C$/hr) to $1260^{\circ}C$ from sintering temperature decreased the amount of sodium which prevents the formation of the crystalline NASICON resulted high number of $ZrO_2$ grains near the surface of some sintered bodies. Maximum electrical conductivity of 0.200 ohm-1cm-1 was obtained at $300^{\circ}C$ for well-sintered samples with little $ZrO_3$. On the other hand, low conductivities were obtained for rapid-cooled samples which have less dense microstructure.

Keywords

References

  1. Mat.Res.Bull. v.11 Crystal Structures and Crystal Chemistry in the System $Na_{1+x}Zr_{2}Si_{x}P_{3-x}O_{12}$ H.Y.P.Hong
  2. Mat.Res.Bull. v.11 Fast $Na^+$ ion Transport in Skelecton Structure J.B.Goodenough;H.YP.Hong;J.A.Kafalas
  3. Energy and Ceramics Ceramics in High Performed Batteries R.S.Gordon;G.R.Miller;T.D.Hadnagy;B.J.McEntire;T.R.Rasmussen;P.Vincenzini(ed.)
  4. Solid State Ion. v.17 Potentiometric Sensor for Sulfur Oxides Using Nasicon as a Solid Electrolyte T.Maruyama;Y.Saito;Y.Matsumoto;Y.Yano
  5. Solid Electrolytes Ionic Conductive Glasses D.Ravaine;J.L.Souquet;P.Hagenmuller(ed.);W. Van Gool(ed.)
  6. Report of the Research laboratory of Engineering Materials v.9 Gas Sensors Using Nasicon as a Solid Electrolyte Y.Saito;T.Maruyama;S.Sasaki
  7. Mat.Res.Bull. v.16 Conduction Paths in Sintered Ionic Conduction Material $Na_{1+x}Y_{x}Zr_{2-x}$(PO₄)₃ S.Fujitsu;M.Nagai;T.Kanazawa
  8. Solid State Ion. v.50 The Study of Hydronium Nasicon Conductivity with Deuterium P.G.Komorowski;S.A.Argyropoulos;J.D.Canaday;A.K.Kuriakose;T.A.Wheat;A.Ahmad;J.Gulens
  9. Solid State Ion. v.53 Electrochemical Studies of Mixed Valence Nasicon O.Tillement;J.Angenault;J.C.Conturier;M.Quarton
  10. Sodium Sulfer Battery The Solid Electrolyte-properties and Characteristics P.T.Moseley;J.L.Sudworth(ed.);A.R.Tilley(ed.)
  11. Ceramics Japan v.27 no.2 Review on Sodium ion Conductors and Their Applications S.Yamaguchi;A.Imai
  12. sintering process Sintering of Polycrystalline Ionic Conductors: β〃_Al₂O₃and Nasicon B.J.McEntire;G.R.Miller;R.S.Gordon;Kuczynski(ed.)
  13. J.Am.Ceram.Soc. v.66 no.10 Effect of Decomposition on the Densification and Properties of Nasicon Ceramic Electrolytes B.J.McEntire;R.A.Bartlett;G.R.Miller;R.S.Gordon
  14. Solid State Ion. v.3;4 Compositional Dependence of the Electrochemical and Structural Parameters in the Nasicon System$Na_{1+x}Si_{x}Zr_{2}P_{3-x}O_{1}2$ U.Von Alpen;M.F.Bell;H.H.Hofer
  15. J.Am.Cer.Soc. v.67 no.3 Synthesis Sintering and Microstructure of Nasicons A.K.Kuriakose;T.A.Wheat;A.Ahmad;J.Dirocco
  16. Solid State Ion. v.3;4 Fabrication and Characterization of Nasicon Electrolytes R.S.Gordon;G.R.Miller;B.J.McEntire;E.D.Beck;J.R.Rasmussen
  17. Solid State Ion. v.24 Dependence of the Properties of Nasicons on Their Composition and Processing A.Ahmad;T.A.Wheat;A.K.Kuriakose;J.D.Canaday;A.G.McDonald
  18. J.Mat.Sci. v.28 Effects of Al₂O₃Addition on the Sinterability and Ionic Conductivity of Nasicon J.J.Kim;T.S.Oh;M.S.Lee;J.G.Park;Y.H.Kim
  19. J.Am.Ceram.Soc. v.59 Ionic Conductivity of Li₄SiO₄,Li₄GeO₄, and Their Solid Solutions I.M.Hodge;M.D.Ingram;A.R.West
  20. J.Am.Ceram.Soc. v.60 Migration Losses in Single Crystal Ionic Conductors:Sodium Beta Alumina and LiGaO₂ R.J.Grant;I.M.Hodge;M.D.Ingram;A.R.West