• 제목/요약/키워드: second order theory

검색결과 756건 처리시간 0.022초

SECOND MAIN THEOREM AND UNIQUENESS PROBLEM OF ZERO-ORDER MEROMORPHIC MAPPINGS FOR HYPERPLANES IN SUBGENERAL POSITION

  • Luong, Thi Tuyet;Nguyen, Dang Tuyen;Pham, Duc Thoan
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.205-226
    • /
    • 2018
  • In this paper, we show the Second Main Theorems for zero-order meromorphic mapping of ${\mathbb{C}}^m$ into ${\mathbb{P}}^n({\mathbb{C}})$ intersecting hyperplanes in subgeneral position without truncated multiplicity by considering the p-Casorati determinant with $p{\in}{\mathbb{C}}^m$ instead of its Wronskian determinant. As an application, we give some unicity theorems for meromorphic mapping under the growth condition "order=0". The results obtained include p-shift analogues of the Second Main Theorem of Nevanlinna theory and Picard's theorem.

OSCILLATIONS OF SOLUTIONS OF SECOND ORDER QUASILINEAR DIFFERENTIAL EQUATIONS WITH IMPULSES

  • Jin, Chuhua;Debnath, Lokenath
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.1-16
    • /
    • 2007
  • Some Kamenev-type oscillation criteria are obtained for a second order quasilinear damped differential equation with impulses. These criteria generalize and improve some well-known results for second order differential equations with land without impulses. In addition, new oscillation criteria are also obtained to generalize and improve known results. Two examples of applications are given to illustrate the theory.

CONTROLLABILITY OF SECOND-ORDER IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY

  • Arthi, Ganesan;Balachandran, Krishnan
    • 대한수학회보
    • /
    • 제48권6호
    • /
    • pp.1271-1290
    • /
    • 2011
  • The purpose of this paper is to investigate the controllability of certain types of second order nonlinear impulsive systems with statedependent delay. Sufficient conditions are formulated and the results are established by using a fixed point approach and the cosine function theory Finally examples are presented to illustrate the theory.

PERTURBATION RESULTS FOR HYPERBOLIC EVOLUTION SYSTEMS IN HILBERT SPACES

  • Kang, Yong Han;Jeong, Jin-Mun
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.13-27
    • /
    • 2014
  • The purpose of this paper is to derive a perturbation theory of evolution systems of the hyperbolic second order hyperbolic equations. We give an example of a partial functional equation as an application of the preceding result in case of the mixed problems for hyperbolic equations of second order with unbounded principal operators.

HAMILTONIAN OF A SECOND ORDER TWO-LAYER EARTH MODEL

  • Selim, H.H.
    • 천문학회지
    • /
    • 제40권2호
    • /
    • pp.49-60
    • /
    • 2007
  • This paper deals with the theory for rotational motion of a two-layer Earth model (an inelastic mantle and liquid core) including the dissipation in the mantle-core boundary(CMB) along with tidal effects produced by Moon and Sun. An analytical solution being derived using Hori's perturbation technique at a second order Hamiltonian. Numerical nutation series will be deduced from the theory.

Reconfiguring Second-order Dynamic Systems via P-D Feedback Eigenstructure Assignment: A Parametric Method

  • Wang Guo-Sheng;Liang Bing;Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권1호
    • /
    • pp.109-116
    • /
    • 2005
  • The design of reconfiguring a class of second-order dynamic systems via proportional plus derivative (P-D) feedback is considered. The aim is to resynthesize a P-D feedback controller such that the eigenvalues of the reconfigured closed-loop system can completely recover those of the original close-loop system, and make the corresponding eigenvectors of the former as close to those of the latter as possible. Based on a parametric result of P-D feedback eigenstructure assignment in second-order dynamic systems, parametric expressions for all the P-D feedback gains and all the closed-loop eigenvector matrices are established and a parametric algorithm for this reconfiguration design is proposed. The parametric algorithm offers all the degrees of design freedom, which can be further utilized to satisfy some additional performances in control system designs. This algorithm involves manipulations only on the original second-order system matrices, thus it is simple and convenient to use. An illustrative example and the simulation results show the simplicity and effect of the proposed parametric method.

SECOND ORDER GENERALIZED DIFFERENCE METHODS OR ONE DIMENSIONAL PARABOLIC EQUATIONS

  • Jiang, Ziwen;Sun, Jian
    • Journal of applied mathematics & informatics
    • /
    • 제6권1호
    • /
    • pp.15-30
    • /
    • 1999
  • In this paper the second order semi-discrete and full dis-crete generalized difference schemes for one dimensional parabolic equa-tions are constructed and the optimal order $H^1$ , $L^2$ error estimates and superconvergence results in TEX>$H^1$ are obtained. The results in this paper perfect the theory of generalized difference methods.

MASS TRANSPORT IN FINITE AMPLITUDE WAVES

  • 김태인
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 1988년도 제30회 수공학연구발표회논문초록집
    • /
    • pp.29-36
    • /
    • 1988
  • A general scheme is developed which determines the Lagrangian motions of water particles by the Eulerian velocity at their mean positions by use of Taylor's theorem. Utilizing the Stokes finite-amplitude wave theory, the mass transport velocity which includes the effects of higher-order wave components is determined. The fifth-order theory predicts the mass transport velocity less than that given by the existing second-order theory over the whole depth. Limited experimental data for changes in wave celerity in closed wave flumes are compared with the theoretical predictions.

  • PDF

Wave propagation of FG polymer composite nanoplates reinforced with GNPs

  • She, Gui-Lin
    • Steel and Composite Structures
    • /
    • 제37권1호
    • /
    • pp.27-35
    • /
    • 2020
  • This study examines the wave propagation of the functionally graded polymer composite (FG-PC) nanoplates reinforced with graphene nanoplatelets (GNPs) resting on elastic foundations in the framework of the nonlocal strain gradient theory incorporating both stiffness hardening and softening mechanisms of nanostructures. To this end, the material properties are based on the Halpin-Tsai model, and the expressions for the classical and higher-order stresses and strains are consistently derived employing the second-order shear deformation theory. The equations of motion are then consistently derived using Hamilton's principle of variation. These governing equations are solved with the help of Trial function method. Extensive numerical discussions are conducted for wave propagation of the nanoplates and the influences of different parameters, such as the nonlocal parameter, strain gradient parameter, weight fraction of GNPs, uniform and non-uniform distributions of GNPs, elastic foundation parameters as well as wave number.