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SECOND MAIN THEOREM AND UNIQUENESS PROBLEM

OF ZERO-ORDER MEROMORPHIC MAPPINGS FOR

HYPERPLANES IN SUBGENERAL POSITION

Thi Tuyet Luong, Dang Tuyen Nguyen, and Duc Thoan Pham

Abstract. In this paper, we show the Second Main Theorems for zero-
order meromorphic mapping of Cm into Pn(C) intersecting hyperplanes

in subgeneral position without truncated multiplicity by considering the

p-Casorati determinant with p ∈ Cm instead of its Wronskian determi-
nant. As an application, we give some unicity theorems for meromorphic

mapping under the growth condition “order=0”. The results obtained in-
clude p-shift analogues of the Second Main Theorem of Nevanlinna theory

and Picard’s theorem.

1. Introduction

In 2006, R. Halburd-R. Korhonen [7] considered the Second Main Theorem
for complex difference operator with finite order in complex plane. Later, in
[8] and [18], difference analogues of the Second Main Theorem for holomorphic
curves in Pn(C) were obtained independently, and in [2] and [12], difference
analogues of the Second Main Theorem for meromorphic functions on Cm were
obtained. In particular, Nevanlinna theory for the p-difference operator can be
found in [1, 11,15–17,19].

Recently, T. B. Cao-R. Korhonen [3] obtained a new natural difference ana-
logue of H. Cartan’s Theorem for meromorphic mapping f : Cm → Pn(C). In
which, the counting function N(r, ν0W (f)) of the Wronskian determinant of f

is replaced by the counting function N(r, ν0Cc(f)) of the Casorati determinant

of f (it was called the finite difference Wronskian determinant in [18]) and in
addition, the hyper-order of f is strictly less than one.

Our first aim in this paper is to prove a new natural p-difference analogue
Second Main Theorem for zero-order meromorphic mapping by considering p-
Casorati determinant. For our purpose, we now recall some notations.
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Let p ∈ Cm, denote by Mm the set of all meromorphic functions on Cm,
denote by φp the set of all meromorphic functions of Mm satisfying f(z) =
f(pz) and denote by φ0p the set of all meromorphic functions of φp having their

zero-orders. Obviously, φ0p ⊂ φp ⊂Mm.

Definition 1. Let f be a meromorphic mapping of Cm into Pn(C) with re-
duced representation f = (f0 : · · · : fn). Then the map f is said to be linearly
nondegenerate over field φ0p if the entire functions f0, . . . , fn are linearly inde-

pendent over field φ0p.

For c = (c1, . . . , cm) and p = (p1, . . . , pm) with pi 6= 0 (1 ≤ i ≤ m) and z =
(z1, . . . , zm), we write c+z = (c1+z1, . . . , cm+zm) and pz = (p1z1, . . . , pmzm).
Denote

f(z) ≡ f := f̄ [0], f(z+ c) ≡ f̄ := f̄ [1], f(z+2c) ≡ ¯̄f := f̄ [2], . . . , f(z+kc) ≡ f̄ [k]

and

f(z) ≡ f := f̂ [0], f(pz) ≡ f̂ := f̂ [1], f(p2z) ≡ ˆ̂
f := f̂ [2], . . . , f(pkz) ≡ f̂ [k].

Let

D(j) =

(
∂

∂z1

)α1(j)

· · ·
(

∂

∂zm

)αm(j)

be a partial differentiation operator of order at most j =
∑m
k=1 αk(j). Similarly

as the Wronskian determinant

W (f) = W (f0, . . . , fn) =

∣∣∣∣∣∣∣∣∣
f0 f1 · · · fn

D(1)f0 D(1)f1 · · · D(1)fn
...

...
...

...
D(n)f0 D(n)f1 · · · D(n)fn

∣∣∣∣∣∣∣∣∣ ,
the Casorati determinant is defined by

Cc(f) = Cc(f0, . . . , fn) =

∣∣∣∣∣∣∣∣∣
f0 f1 · · · fn
f̄0 f̄1 · · · f̄n
...

...
...

...

f̄
[n]
0 f̄

[n]
1 · · · f̄

[n]
n

∣∣∣∣∣∣∣∣∣
and the p-Casorati determinant is defined by

Cp(f) = Cp(f0, . . . , fn) =

∣∣∣∣∣∣∣∣∣
f0 f1 · · · fn
f̂0 f̂1 · · · f̂n
...

...
...

...

f̂
[n]
0 f̂

[n]
1 · · · f̂

[n]
n

∣∣∣∣∣∣∣∣∣ .
Definition 2. Let {Hj}qj=1 be the hyperplanes in Pn(C). Let N ≥ n and

q ≥ N +1. The family {Hj}qj=1 is said to be in N -subgeneral position in Pn(C)
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if for every subset R ⊂ {1, . . . , q} with the cardinality |R| = N + 1, then⋂
j∈R

Hj = ∅.

If they are in n-subgeneral position, we simply say that they are in general
position.

Consider f be a meromorphic mapping of Cm into Pn(C) with reduced
representation f = (f0 : · · · : fn) and a hyperplane H : a0ω0 + · · ·+ anωn = 0.
We define

(f,H) = H(f) := a0f0 + · · ·+ anfn,

which is a holomorphic function on Cm.
Using above notations, we have the p-difference analogue of H. Cartan’s

Theorem [4] as follows.

Theorem 1. Let p = (p1, . . . , pm) ∈ Cm with pj 6= 0 for all j ∈ {1, . . . ,m}
and let f : Cm → Pn(C) be a linearly nondegenerate meromorphic mapping
over the field φ0p. Let Hj (1 ≤ j ≤ q) be q hyperplanes in Pn(C), located in
N -subgeneral position. Assume that f has the zero-order. Then we have

(q − 2N + n− 1)T (r, f) ≤
q∑
j=1

N(r, ν0Hj(f))−
N

n
N(r, ν0Cp(f)) + o (T (r, f))

for all r on a set of logarithmic density 1.

Here, by ν0ϕ we denote the zero-divisor of holomorphic function ϕ from Cm
into C.

Definition 3. Let k ∈ N, p = (p1, . . . , pm) ∈ Cm with pj 6= 0 for all j ∈
{1, . . . ,m} and a ∈ C. An a-point z0 of meromorphic function h(z) is said that
to be k-successive with separated p respect to the rescaling τp(z) = pz, if the k
functions h(plz), (l = 1, . . . , k) take the value a at z = z0 with multiplicity not
less than that of h(z) there. All the other a-points of h(z) are called k-aperiodic
of pace p respect to the rescaling τp(z) = pz.

Consider H be a hyperplane. By N̂ [k,p](r,H(f)), we denote the counting
function of k-aperiodic zeros of the function H(f) of pace p respect to the
rescaling τp(z) = pz.

Note that N̂ [k,p](r,H(f)) ≡ 0 when all zeros of H(f) with taking their multi-
plicities into account are located periodically with period p respect to the rescal-
ing τp(z) = pz. This is also the case when the hyperplane H is forward invariant
by f with respect to the rescaling τp(z) = pz, i.e., τp(f

−1(H)) ⊂ f−1(H) and
f−1(H) is considered to be multi-sets in which each point is repeated according
to its multiplicity. Then we have the result as follows.

Theorem 2. Let p = (p1, . . . , pm) ∈ Cm with pj 6= 0 for all j ∈ {1, . . . ,m}
and let f : Cm → Pn(C) be a linearly nondegenerate meromorphic mapping
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over the field φ0p. Let Hj (1 ≤ j ≤ q) be q hyperplanes in Pn(C), located in
N -subgeneral position. Assume that f has the zero-order. Then we have

(q − 2N + n− 1)T (r, f) ≤
q∑
j=1

N̂ [n,p](r,Hj(f)) + o (T (r, f))

for all r on a set of logarithmic density 1.

The uniqueness problem for meromorphic mappings was first investigated
by R. Nevanlinna. In 1975, H. Fujimoto [5] generalized Nevanlinnas five-value
theorem to the case of higher dimension by showing that if two linearly non-
degenerate meromorphic mappings f, g : Cm → Pn(C) have the same inverse
images counted with multiplicities for q ≥ 3n+2 hyperplanes in general position
in Pn(C), then f ≡ g.

By considering the uniqueness problem for holomorphic curves f(z) and
f(z + c) also for holomorphic curves f(z) and f(pz) intersecting hyperplanes
in general position, R. Halburd, R. Korhonen, K. Tohge [8, Theorem 1.1 and
Theorem 6.1] obtained a difference analogue of Picard’s theorem. Recently, T.
B. Cao, R. Korhonen [3] generalized the this result [8, Theorem 1.1] for the
case of meromorphic mappings f(z) and f(z + c) intersecting hyperplanes in
subgeneral position.

Our final aim in this paper is to extend the result in [8, Theorem 6.1] to
meromorphic mappings f(z) and f(pz) of Cm into Pn(C) intersecting hyper-
planes in N -subgeneral position. Our result is a difference analogue of Picard’s
theorem. Namely, we will prove the following theorem.

Theorem 3. Let f be a zero-order meromorphic mapping of Cm into Pn(C)
and let p = (p1, . . . , pm) ∈ Cm with pj 6= 0, 1 for all j ∈ {1, . . . ,m}. As-
sume that f is forward invariant over q hyperplanes in N -subgeneral position
in Pn(C) respect to the rescaling τp(z) = pz. Then the image of f is con-

tained in a projective linear subspace over φ0p of dimension ≤
[

N
q−N

]
. Special,

if q ≥ 2N + 1, then f(z) = f(pz).

Note that when |pi| 6= 1 for all i ∈ {1, . . . ,m}, then f(z) = f(pz) implies that
f must be a constant mapping. Immediately, we have the following corollary.

Corollary 4. Let f be a zero-order meromorphic mapping of Cm into Pn(C)
and let p = (p1, . . . , pm) ∈ Cm satisfying |pj | 6= 0, 1 for all j ∈ {1, . . . ,m}.
Assume that f is forward invariant over q hyperplanes in general position in
Pn(C) respect to the rescaling τp(z) = pz. If q ≥ 2n+ 1, then f is constant.

2. Preliminaries and auxiliary lemmas

2.1. We set ||z|| =
(
|z1|2 + · · ·+ |zn|2

)1/2
for z = (z1, . . . , zn) ∈ Cn and define

Bm(r) := {z ∈ Cm : ||z|| < r}, Sm(r) := {z ∈ Cm : ||z|| = r} (0 < r <∞).
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Define
σm(z) :=

(
ddc||z||2

)m−1
and

ηm(z) := dclog||z||2 ∧
(
ddclog||z||2

)m−1
on Cm \ {0}.

2.2. Let F be a nonzero holomorphic function on a domain Ω in Cm. For a
set α = (α1, . . . , αm) of nonnegative integers, we set |α| = α1 + · · · + αm and

DαF = ∂|α|F
∂α1z1···∂αmzm . We define the map νF : Ω→ Z by

νF (z) := max {n : DαF (z) = 0 for all α with |α| < n} (z ∈ Ω).

We mean by a divisor on a domain Ω in Cm a map ν : Ω→ Z such that, for
each a ∈ Ω, there are nonzero holomorphic functions F and G on a connected
neighbourhood U ⊂ Ω of a such that ν(z) = νF (z) − νG(z) for each z ∈ U
outside an analytic set of dimension ≤ m−2. Two divisors are regarded as the
same if they are identical outside an analytic set of dimension ≤ m− 2. For a
divisor ν on Ω we set |ν| := {z : ν(z) 6= 0}, which is a purely (m−1)-dimensional
analytic subset of Ω or empty.

Take a nonzero meromorphic function ϕ on a domain Ω in Cn. For each
a ∈ Ω, we choose nonzero holomorphic functions F and G on a neighbourhood
U ⊂ Ω such that ϕ = F

G on U and dim(F−1(0) ∩ G−1(0)) ≤ m − 2, and we

define the divisors ν0ϕ, ν
∞
ϕ by ν0ϕ := νF , ν

∞
ϕ := νG, which are independent of

choices of F and G and so globally well-defined on Ω.
2.3. For a divisor ν on Cm, we define the counting functions of ν by

n(t) =


∫

|ν| ∩B(t)

ν(z)σm−1 if m ≥ 2∑
|z|≤t

ν(z) if m = 1

and

N(r, ν) =

∫ r

1

n(t)

t2m−1
dt (1 < r <∞).

Let ϕ : Cm −→ C be a meromorphic function. Define

Nϕ(r) = N(r, νϕ).

2.4. Let f : Cm −→ Pn(C) be a meromorphic mapping. For arbitrarily fixed
homogeneous coordinates (w0 : · · · : wn) on Pn(C), we take a reduced rep-
resentation f = (f0 : · · · : fn), which means that each fi is a holomorphic
function on Cm and f(z) =

(
f0(z) : · · · : fn(z)

)
outside the analytic set

I(f) = {z ∈ Cm : f0(z) = · · · = fn(z) = 0} of codimension ≥ 2. Set

‖f‖ =
(∑n

j=0 |fj |2
)1/2

. The characteristic function of f is defined by

T (r, f) =

∫ r

r0

dt

2m−1

∫
Bm(r)

ddc log ||f ||2 ∧ σm(z)

=

∫
Sm(r)

log‖f‖ηm −
∫

Sm(r0)

log‖f‖ηm(z).
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Note that T (r, f) is independent of the choice of the representation of f .
The order and hyperorder of f are respectively defined by

σ(f) := lim sup
r→∞

log+ T (r, f)

log r
and ζ(f) := lim sup

r→∞

log+ log+ T (r, f)

log r
,

where log+ x := max{log x, 0} for any x > 0.
2.5. Let f be a meromorphic mapping of Cm into Pn(C) with reduced rep-
resentation f = (f0 : · · · : fn) and a hyperplane H : a0ω0 + · · · + anωn = 0
satisfies

(f,H) = a0f0 + · · ·+ anfn 6≡ 0.

The proximity function is defined as

mf,H(r) :=

∫
Sm(r)

log+ ||f || · ||H||
|(f,H)|

ηm(z) +

∫
Sm(1)

log+ ||f || · ||H||
|(f,H)|

ηm(z).

We have the First Main Theorem of Nevanlinna theory

mf,H(r) +N(r, ν0H(f)) = T (r, f) +O(1),

where O(1) is a constant independent of r.
2.6. Let ϕ be a nonzero meromorphic function on Cm, which is occationally
regarded as a meromorphic map into P1(C). The proximity function of ϕ is
defined by

m(r, ϕ) :=

∫
Sm(r)

log+ |ϕ|ηm.

Lemma 5 ([1, Lemmas 5.1, 5.2, and 5.3]). Let f be a non-constant zero-order
meromorphic function of C into C and let p ∈ C \ {0}. Then

m

(
r,
f(pz)

f(z)

)
<

4D1 + 2D2

2n
T (r, f(z))

on a set of logarithmic density 1 for all n ∈ N, where D1, D2 are positive
constants.

Lemma 6 ([9, Lemma 4]). If T : R+ → R+ is an increasing function such that
order

σ(T ) = lim
r→∞

log T (r)

log r
= 0,

then the set
E :=

{
r ∈ R+ : T (C1r) ≥ C2T (r)

}
has logarithmic density 0 for all C1 > 1 and C2 > 1.

Lemma 7 ([1, Lemma 5.4]). Let T : R+ → R+ be an increasing function and
U : R+ → R+. If there exits a decreasing sequence {cn}n∈N such that cn → 0
as n→∞ and for all n ∈ N, the set

Fn = {r ≥ 1 : U(r) < cnT (r)}
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has logarithmic density 1, then U(r) = o(T (r)) on a set of logarithmic density
1.

Lemma 8. Let T be a function as in Lemma 6 and let p ∈ R+. Then we have

T (pr) = T (r) + o(T (r))

on a set of logarithmic density 1.

Proof. Case 1: p ≤ 1. Since T (r) is an increasing function, we have T (pr) ≤
T (r) for all r > 0. Obviously, the conclusion holds.
Case 2: p > 1. By Lemma 6, for each n ∈ N, we have

En :=

{
r ≥ 1 : T (pr) <

(
1 +

1

n

)
T (r)

}
has logarithmic density 1. Put U(r) = T (pr)− T (r), we deduce that

0 < U(r) <
1

n
T (r)

on a set of logarithmic density 1. It follows from Lemma 7 that U(r) = o(T (r))
on a set of logarithmic density 1. Therefore, we get

(2.1) T (pr) = T (r) + o(T (r))

on a set of logarithmic density 1. Therefore, the proof of the Lemma 8 is
finished. �

For each ω ∈ Bm−1(r), we define a function pr(ω) =
√
r2 − |ω|2. We need

the following lemma from W. Stoll.

Lemma 9 ([10]). Let r > 0 and let h be a function on Sm(r) such that hηm is
integrable over Sm(r). Then∫

Sm(r)

h(z)ηm(z) =
1

r2m−2

∫
Bm−1(r)

σm−1(ω)

∫
S1(Pr(ω))

h(ω, ζ)η1(ζ).

Consider a non-constant meromorphic function f on Cm, take ω ∈ Cm−1
and define fω(z) := f(ω, z) on C. We will prove the following lemma.

Lemma 10. Let f be a meromorphic function on Cm of zero-order such that
f(0) 6= 0,∞ and let p̃j := (1, . . . , pj , . . . , 1) with pj 6= 0. Then

m

(
r,
f(p̃jz)

f(z)

)
=

∫
Sm(r)

log+

∣∣∣∣f(p̃jz)

f(z)

∣∣∣∣ ηm(z) = o(T (r, f(z)))

on a set of logarithmic density 1.

Proof. By applying Lemma 9 for h(z) = log+
∣∣∣ f(p̃jz)f(z)

∣∣∣, we have

m

(
r,
f(p̃jz)

f(z)

)
=

∫
Sm(r)

log+

∣∣∣∣f(p̃jz)

f(z)

∣∣∣∣ ηm(z)
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=
1

r2m−2

∫
Bm−1(r)

σm−1(ω)

∫
S1(Pr(ω))

log+

∣∣∣∣fω(pjzj)

fω(zj)

∣∣∣∣ η1(ζ)

=
1

r2m−2

∫
Bm−1(r)

m

(
Pr(ω),

fω(pjzj)

fω(zj)

)
σm−1(ω).

By Lemma 5, there exist two positive constants D1 and D2 which are indepen-
dent of Pr(ω) such that for all n ∈ N, we have

m

(
r,
f(p̃jz)

f(z)

)
<

1

r2m−2

∫
Bm−1(r)

4D1 + 2D2

2n
T (Pr(ω), fω(zj))σm−1(ω)

=
4D1 + 2D2

2n
· 1

r2m−2

∫
Bm−1(r)

σm−1(ω)

∫
S1(Pr(ω))

log ‖fω(zj)‖ η1(zj) +O(1)

=
4D1 + 2D2

2n

∫
Sm(r)

log ‖f(ω, zj)‖ ηm(z) +O(1)

=
4D1 + 2D2

2n
T (r, f(z)) +O(1)

on a set of logarithmic density 1 for all n ∈ N. By applying the Lemma 7, we
get

m

(
r,
f(p̃jz)

f(z)

)
= o(T (r, f(z)))

on a set of logarithmic density 1. We finish the proof of Lemma 10. �

The lemma on the Logarithmic Derivative [4–6, 14] plays an important role
in Nevanlinna theory. Here, it is replaced by the following lemma.

Lemma 11. Let f be a non-constant zero-order meromorphic mapping of Cm
into C and p = (p1, . . . , pm) ∈ Cm with pj 6= 0 for all j. Then

m

(
r,
f(pz)

f(z)

)
= o(T (r, f(z)))

on a set of logarithmic density 1.

Proof. Since f is a meromorphic function on Cm of zero-order, according to
Lemma 10, it follows that

m

(
r,
f(pz)

f(z)

)
=

∫
Sm(r)

log+

∣∣∣∣f(pz)

f(z)

∣∣∣∣ ηm(z)
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=

∫
Sm(r)

log+
n∏
k=1

∣∣∣∣∣∣∣∣∣
f(

k∏
j=0

p̃jz)

f(
k−1∏
j=0

p̃jz)

∣∣∣∣∣∣∣∣∣ ηm(z)

≤
n∑
k=1

∫
Sm(r)

log+

∣∣∣∣∣∣∣∣∣
f(

k∏
j=0

p̃jz)

f(
k−1∏
j=0

p̃jz)

∣∣∣∣∣∣∣∣∣ ηm(z) = o(T (r, f))

on a set of logarithmic density 1. The proof of Lemma 11 is finished. �

Lemma 12. Let f be a meromorphic function on Cm of zero-order such that
f(0) 6= 0,∞ and let p = (p1, . . . , pm) ∈ Cm with pj 6= 0 for all j. Then we have

T (r, f(pz)) = T (r, f(z)) + o(T (r, f(z)))

on a set of logarithmic density 1.

Proof. By the First Main Theorem, we have

T

(
r,
f(pz)

f(z)

)
= m

(
r,
f(pz)

f(z)

)
+N

(
r,
f(pz)

f(z)

)
+O(1).

Therefore, by Lemma 11, we get

(2.2) T (r, f(pz))− T (r, f(z)) = N(r, f(pz))−N(r, f(z)) + o(T (r, f(z)))

on a set of logarithmic density 1. Also by the First Main Theorem, we deduce
that

lim
r→∞

log(N(r, f))

log r
≤ lim
r→∞

log T (r, f)

log r
= σ(f) = 0.

This, by Lemma 8, we have

(2.3) N(|p|r, f) = N(r, f) + o(N(r, f) ≤ N(r, f) + o(T (r, f))

on a set of logarithmic density 1. Together (2.2) with (2.3), we get

T (r, f(pz)) ≤ T (r, f(z)) + o(T (r, f(z)))

on a set of logarithmic density 1. We have the assertion of Lemma 12. �

The similar results to Lemmas 10, 11, and 12 can be found in [1,11,16,17,19].
It is known that holomorphic functions f0, . . . , fn on Cm are linearly de-

pendent over C if and only if their Wronskian determinants W (f0, . . . , fn)
vanish identically [6, 13, 14]. Similarly, holomorphic functions f0, . . . , fn on
Cm are linearly dependent over Pλc if and only if their Casorati determinants
Cc(f0, . . . , fn) vanish identically [3], where Pλc is the field of c-periodic mero-
morphic functions having hyper-order of λ.

Here, we introduce a similar result for the case of p-Casorati determinant by
the same method as in [8]. Namely, we have the following.
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Lemma 13. Let f : Cm → Pn(C) be a meromorphic mapping with reduce
presentation f = (f0 : · · · : fn) and let p = (p1, . . . , pm) ∈ Cm with pj 6= 0 for
all j. Assume that σ(f) = 0. Then p-Casorati determinant Cp (f0, . . . , fn) ≡ 0
if and only if the functions f0, . . . , fn are linear dependent over the field φ0p.

Proof. Suppose first that f0, . . . , fn are linear dependent over the field φ0p. Then

there exist ϕ0, . . . , ϕn ∈ φ0p such that ϕ0f0 + · · ·+ ϕnfn = 0 and so

(2.4)


ϕ0f0 + · · ·+ ϕnfn = 0

ϕ0f̂0 + · · ·+ ϕnf̂n = 0
...

ϕ0f̂
[n]
0 + · · ·+ ϕnf̂

[n]
n = 0.

Since (2.4) has a nontrivial solution, we get p-Casorati determinant

Cp (f0, . . . , fn) ≡ 0.

We apply induction on n to prove the converse assertion.
In the case when n = 1, suppose that Cp (f0, f1) ≡ 0. We consider the

system of equations

(2.5)

{
ϕ0f0 + ϕ1f1 = 0

ϕ0f̂0 + ϕ1f̂1 = 0.

Since Cp (f0, f1) ≡ 0, it is easy to see that ϕ0 = f1
f0

, ϕ1 = −1 is a solution

of (2.5). Moreover, by assumption σ(f) = 0, we have σ(f̃) = 0 where f̃ :=

(f0 : f1). Then the order of ϕ0 satisfies σ(ϕ0) = σ
(
f1
f0

)
≤ σ(f̃) ≤ σ(f) = 0.

Obviously, ϕ1 = −1 ∈ φ0p and ϕ0 = f1
f0

= f̂1
f̂0

. Therefore, we also have ϕ0 ∈ φ0p.
This implies that f0, f1 are linearly dependent over φ0p.

Suppose now that Cp (f0, . . . , fj) ≡ 0 implies that f0, . . . , fj are linearly
dependent over φ0p for all j ∈ {1, . . . , k − 1}, where k ≤ n and assume that
Cp (f0, . . . , fk) ≡ 0. Then the linear system

(2.6)



ϕ0f0 + · · ·+ ϕk−1fk−1 = fk
ϕ0f̂0 + · · ·+ ϕk−1f̂k−1 = f̂k
...

ϕ0f̂
[k−1]
0 + · · ·+ ϕk−1f̂

[k−1]
k−1 = f̂

[k−1]
k

ϕ0f̂
[k]
0 + · · ·+ ϕk−1f̂

[k]
k−1 = f̂

[k]
k ,

where we have made the choice ϕk = −1. If Cp (f0, . . . , fk−1) ≡ 0, then
f0, . . . , fk−1 are linearly dependent over φ0p by the induction assumption. Thus

also f0, . . . , fk−1, fk are linearly dependent over φ0p. If Cp (f0, . . . , fk−1) 6= 0,
then by Cramer’s rule for each i = 0, . . . , k − 1, we have

ϕi =
Cp (f0, . . . , fi−1, fk, fi+1, . . . , fk−1)

Cp (f0, . . . , fk−1)
,
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where fk occurs in the ith entry of p-Casorati determinent in the numerator
instead of fi. By writing

ϕi =
fif̂i · · · f̂i

[k−1]
· Cp

(
f0
fi
, . . . , fi−1

fi
, fkfi ,

fi+1

fi
, . . . , fk−1

fi

)
fkf̂k · · · f̂k

[k−1]
· Cp

(
f0
fk
, . . . , fk−1

fk

) ,

it can be seen that

T (r, ϕi) = O

 k∑
j=0

k−1∑
l=0

(
T

(
r,
f̂j

[l]

f̂i
[l]

)
+ T

(
r,
f̂j

[l]

f̂k
[l]

))
for all i = 0, . . . , k − 1. Now by Lemma 12, we have T

(
r, f̂
)

= T (r, f) +

o (T (r, f)) for all meromorphic mappings f(z) with σ(f) = 0, and it follows
that σ(ϕi) = 0 for all i = 0, . . . , k − 1.

We still need to prove that ϕi satisfies ϕi(pz) = ϕi(z) for all i = 0, . . . , k−1.

By applying the operator ∆̂p to k equations in the system (2.6), where ∆̂pf =

f̂ − f , it follows that
(2.7)

(
ϕ0∆̂pf0 + · · ·+ ϕk−1∆̂pfk−1

)
+
(
f̂0∆̂pϕ0 + · · ·+ f̂k−1∆̂pϕk−1

)
= ∆̂pfk(

ϕ0∆̂pf̂0 + · · ·+ ϕk−1∆̂pf̂k−1

)
+
(

ˆ̂
f0∆̂pϕ0 + · · ·+ ˆ̂

fk−1∆̂pϕk−1

)
= ∆̂pf̂k

...(
ϕ0∆̂pf̂

[k−1]
0 + · · ·+ ϕk−1∆̂pf̂

[k−1]
k−1

)
+
(
f̂
[k]
0 ∆̂pϕ0 + · · ·+ f̂

[k]
k−1∆̂pϕk−1

)
= ∆̂pf̂

[k−1]
k .

On the other hand also from (2.6), we have

(2.8)


ϕ0∆̂pf0 + · · ·+ ϕk−1∆̂pfk−1 = ∆̂pfk
ϕ0∆̂pf̂0 + · · ·+ ϕk−1∆̂pf̂k−1 = ∆̂pf̂k
...

ϕ0∆̂pf̂
[k−1]
0 + · · ·+ ϕk−1∆̂pf̂

[k−1]
k−1 = ∆̂pf̂

[k−1]
k .

Together (2.7) with (2.8), we get
f̂0∆̂pϕ0 + · · ·+ f̂k−1∆̂pϕk−1 = 0
ˆ̂
f0∆̂pϕ0 + · · ·+ ˆ̂

fk−1∆̂pϕk−1 = 0
...

f̂
[k]
0 ∆̂pϕ0 + · · ·+ f̂

[k]
k−1∆̂pϕk−1 = 0,

which has only trivial solution. Therefore, ∆̂pϕ0 ≡ · · · ≡ ∆̂pϕk−1 ≡ 0. It
follows that ϕi(pz) = ϕi(z) for all i = 0, . . . , k − 1. We finish the proof of
Lemma 13. �
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3. The proof of Theorem 1

We recall the lemma due to Nochka (see [5, 6, 13,14]) as follows.

Lemma 14. Let H1, . . . ,Hq (q > 2N −n+ 1) be hyperplanes in Pn(C) located
in N -subgeneral position. Then there exist a function ω : {1, . . . , q} → (0, 1]
called a Nochka weight and a real number ω̃ ≥ 1 called a Nochka constant
satisfying the following conditions:

(i) If j ∈ {1, . . . , q}, then 0 < ω(j)ω̃ ≤ 1.
(ii) q − 2N + n− 1 = ω̃(

∑q
j=1 ω(j)− n− 1).

(iii) For R ⊂ {1, . . . , q} with |R| = N + 1, then
∑
i∈R ω(i) ≤ n+ 1.

(iv) N
n ≤ ω̃ ≤

2N−n+1
n+1 .

(v) Given real numbers λ1, . . . , λq with λj ≥ 1 for 1 ≤ j ≤ q and given
any R ⊂ {1, . . . , q} and |R| = N + 1, there exists a subset R1 ⊂ R such that
|R1| = rank{Hi}i∈R1 = n+ 1 and∏

j∈R
λ
ω(j)
j ≤

∏
i∈R1

λi.

Lemma 15. Let f : Cm → Pn(C) be an linearly nondegenerate meromorphic
mapping over φ0p, and Hj , j ∈ Q = {1, . . . , q} are hyperplanes, located in N -
subgeneral position in Pn(C). Let ω(j) be the Nochka weights of {Hj}j∈Q.
Assume that q > 2N − n+ 1. Then we get

||f ||
∑
j∈S ω(j) ·

∏
tj∈R
||f̂ [j]||

ω(tj) ·
n∏
j=0

||f̂ [j]||
−1

≤ K ·
Πtj∈R|Hj(f̂

[j])|
ω(tj) ·Πj∈S |Hj(f)|ω(j)

|Cp(f)|
|Cp(Hj(f) : j ∈ R0)|
Πtj∈R0 |(Htj (f̂

[j]))|

for an arbitrarily z ∈ Cm \
({
z ∈ Cm : Πtj∈RHj(f̂

[j]) ·Πj∈SHj(f) = 0
}
∪ I(f)

)
,

where I(f) = {z ∈ Cm : f0(z) = · · · = fn(z) = 0} and K depends on {Hj}j∈Q,
and R0, R, S are some subsets of Q such that

R0 = {t0, t1, . . . , tn} ⊂ R = {t0, t1, . . . , tn, tn+1, . . . , tN} ⊂ Q \ S.

Proof. Since the hyperplanes {Hj}qj=1 are in N -subgeneral position of Pn(C),

we have ∩j∈RHj = ∅ for any R ⊂ Q with |R| = N + 1. This implies that there
exists a subset S ⊂ Q with |S| = q −N − 1 such that Πj∈SHj(ω) 6= 0.

For each j ∈ S, we consider function hj(ω) =
|Hj(ω)|
||ω|| with ω ∈ Pn(C). It is

a positive continuous function on Pn(C). By the compactness of Pn(C), there
exists a positive constant Kj such that 1

Kj
≤ hj(ω) ≤ Kj . Therefore, we have

(3.9)
1

Kj
≤ |Hj(f̂

[kj ])|
||f̂ [kj ]||

≤ Kj



SECOND MAIN THEOREM AND UNIQUENESS PROBLEM... 217

for each j ∈ S, kj ∈ N∗. It is easy to see that for each j ∈ Q \ S and kj ∈ N∗,
there exists a positive constant Kj such that

|Hj(f̂
[kj ])|

||f̂ [kj ]||
≤ Kj .

Put R = Q \S. Then |R| = N + 1. Choose R0 ⊂ R such that |R0| = n+ 1 and

R0 satisfies Lemma 14(v) with respect to numbers
||f̂ [kj ]||Kj
|Hj(f̂ [kj ])|

for arbitrary fixed

point z ∈ Cm \
({
z ∈ Cm : Πj∈Q|Hj(f̂

[kj ])| = 0
}
∪ I(f)

)
and kj ∈ N. We may

assume that

R = {t0, t1, . . . , tn, tn+1, . . . , tN} and R0 = {t0, t1, . . . , tn}.
For Q, we can rewrite its elements as follows.

Q = {t0, t1, . . . , tn, tn+1, . . . , tN , tN+1, . . . , tq−1}.
Then

(3.10)
∏
tj∈R

(
||f̂ [j]||Ktj

|Htj (f̂
[j])|

)ω(tj)
≤
∏
tj∈R0

||f̂ [j]||Ktj

|Htj (f̂
[j])|

.

Since f is linearly nondegenerate over field φ0p, it follows from Lemma 13
that the Casorati determinant Cp(f) 6≡ 0. By rank{Htj}j∈R0 = n + 1, there

exists a positive constant KR0 such that |Cp(f)| = KR0 · |Cp(Hj(f) : j ∈ R0)|.
Thus

(3.11)
KR0 · |Cp(Hj(f) : j ∈ R0)|

|Cd(f)|
= 1.

Since (3.9) and (3.10), for an arbitrarily

z ∈ G := Cm \
({
z ∈ Cm : Πtj∈RHj(f̂

[j]) ·Πj∈SHj(f) = 0
}
∪ I(f)

)
,

we have

∏
j∈S

(
1

K2
j

)ω(j)(3.12)

≤
∏
j∈S

(
|Hj(f)|
||f ||Kj

)ω(j)

≤
∏
tj∈R

(
||f̂ [j]||Ktj

|Htj (f̂
[j])|

)ω(tj)
·

∏
tj∈R |Htj (f̂

[j])|
ω(tj)∏

j∈S |Hj(f)|ω(j)

||f ||
∑
j∈S ω(j) ·

∏
tj∈R ||f̂

[j]||
ω(tj) ·K

∑q
j=1 ω(j)

0

≤
∏
tj∈R0

||f̂ [j]||Ktj

|Htj (f̂
[j])|
·

∏
tj∈R |Htj (f̂

[j])|
ω(tj)∏

j∈S |Hj(f)|ω(j)

||f ||
∑
j∈S ω(j) ·

∏
tj∈R ||f̂

[j]||
ω(tj) ·K

∑q
j=1 ω(j)

0
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=

∏
tj∈R0 Ktj

K
∑q
j=1 ω(j)

0

·
∏
tj∈R |Htj (f̂

[j])|
ω(tj)∏

j∈S |Hj(f)|ω(j)

|Ht0(f) ·Ht1(f̂) · · ·Htn(f̂ [n])|

× 1

||f ||
∑
j∈S ω(j) ·

∏
tj∈R ||f̂

[j]||
ω(tj) ·

∏
tj∈R0 ||f̂ [j]||

−1 ,

where K0 := min{K1, . . . ,Kq}. Together (3.11) with (3.12), for z ∈ G, we have

∏
j∈S

(
1

K2
j

)ω(j)

≤
∏
tj∈R0 Ktj ·KR0

K
∑q
j=1 ω(j)

0

· 1

||f ||
∑
j∈S ω(j) ·

∏
tj∈R ||f̂

[j]||
ω(tj) ·

∏
tj∈R0 ||f̂ [j]||

−1

×
∏
tj∈R |Htj (f̂

[j])|
ω(tj)∏

j∈S |Hj(f)|ω(j)

|Cp(f)|
· |Cp(Hj(f) : j ∈ R0)|
|Ht0(f) ·Ht1(f̂) · · ·Htn(f̂ [n])|

.

It implies that

||f ||
∑
j∈S ω(j) ·

∏
tj∈R
||f̂ [j]||

ω(tj) ·
n∏
j=0

||f̂ [j]||
−1

≤
∏
tj∈R0 Ktj ·KR0 ·Πj∈S(Kj)

2ω(j)

K
∑q
j=1 ω(j)

0

·
∏
tj∈R |Htj (f̂

[j])|
ω(tj)∏

j∈S |Hj(f)|ω(j)

|Cp(f)|

× |Cp(Hj(f) : j ∈ R0)|
|Ht0(f) ·Ht1(f̂) · · ·Htn(f̂ [n])|

for an arbitrarily z ∈ G. We obtain Lemma 15 by setting

K =

∏
tj∈R0 Ktj ·KR0 ·Πj∈S(Kj)

2ω(j)

K
∑q
j=1 ω(j)

0

which is a positive constant depending on {Hj}qj=1, R0, R and S. We finish the
proof of Lemma 15. �

Proof of Theorem 1. By Lemma 15, for r > 1, we have∑
j∈S

ω(j) log ||f ||+
∑
tj∈R

ω(tj) log ||f̂ [j]|| −
n∑
j=0

log ||f̂ [j]||

≤
∑
tj∈R

ω(tj) log |Htj (f̂
[j])|+

∑
j∈S

ω(j) log |Hj(f)| − log |Cp(f)|

+ log
|Cp(Hj(f) : j ∈ R0)|
Πtj∈R0 |(Htj (f̂

[j]))|
+O(1).
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Integrating both sides of this inequality and using Jensen’s theorem and by
definition of the characteristic function of f , we have

∑
j∈S

ω(j)Tf (r) +
∑
tj∈R

ω(tj)Tf̂ [j](r)−
n∑
j=0

Tf̂ [j](r)(3.13)

≤
∑
tj∈R

ω(tj)N(r, ν0
Htj (f̂

[j])
) +

∑
j∈S

ω(j)N(r, ν0Hj(f))−N(r, ν0Cp(f)))

+

∫
Sm(r)

log+ |Cp(Hj(f) : j ∈ R0)|
Πtj∈R0 |(Htj (f̂

[j]))|
ηm(z) +O(1)

≤
∑
tj∈R

ω(tj)N(|p|r, ν0Htj (f)) +
∑
j∈S

ω(j)N(r, ν0Qj(f))−N(r, ν0Cd(f)))

+

∫
Sm(r)

log+ |Cp(Hj(f) : j ∈ R0)|
Πtj∈R0 |(Htj (f̂

[j]))|
ηm(z) +O(1).

By the First Main Theorem, the order of N(r, ν0Hj(f)) satisfies

lim sup
r→∞

log+N(r, ν0Htj (f)
)

log r
≤ lim sup

r→∞

log+ T (r, f)

log r
= σ(f) = 0.

So, by Lemma 8, the below inequality holds on a set of logarithmic density 1

N(|p|r, ν0Htj (f)) = N(r, ν0Htj (f)
) + o

(
N(r, ν0Htj (f)

)
)

≤ N(r, ν0Htj (f)
) + o (T (r, f)) .

It follows from (3.13) that

∑
j∈S

ω(j)Tf (r) +
∑
tj∈R

ω(tj)Tf̂ [j](r)−
n∑
j=0

Tf̂ [j](r)(3.14)

≤
∑
tj∈R

ω(tj)N(r, ν0Htj (f)
) +

∑
j∈S

ω(j)N(r, ν0Hj(f))−N(r, ν0Cp(f)))

+

∫
Sm(r)

log+ |Cp(Hj(f) : j ∈ R0)|
Πtj∈R0 |(Htj (f̂

[j]))|
ηm(z) + o (T (r, f))

=
∑
j∈Q

ω(j)N(r, ν0Hj(f))−N(r, ν0Cp(f)))

+

∫
Sm(r)

log+ |Cp(Hj(f) : j ∈ R0)|
Πtj∈R0 |(Htj (f̂

[j]))|
ηm(z) + o (T (r, f)) .
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We have

Cp(Hj(f) : j ∈ R0)

Πtj∈R0 |(Qtj (f̂ [j]))|
=

∣∣∣∣∣∣∣∣∣∣∣∣

1
Ht1 (f)

Ht0 (f)
· · · Htn (f)

Ht0 (f)

1
Ht1 (f̂)

Ht0 (f̂)
· · · Htn (f̂)

Ht0 (f̂)

...
...

...
...

1
Ht1 (f̂

[n])

Ht0 (f̂
[n])

· · · Htn (f̂
[n])

Ht0 (f̂
[n])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣Ht1 (f̂)
Ht0 (f̂)

· · · Htn (f̂
[n])

Ht0 (f̂
[n])

∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

1
Ht1 (f̂)

Ht0 (f̂)
/
Ht1 (f)

Ht0 (f)
· · · Htn (f̂)

Ht0 (f̂)
/
Htn (f)
Ht0 (f)

...
...

...
...

1
Ht1 (f̂

[n])

Ht0 (f̂
[n])

/
Ht1 (f)

Ht0 (f)
· · · Htn (f̂

[n])

Ht0 (f̂
[n])

/
Htn (f)
Ht0 (f)

∣∣∣∣∣∣∣∣∣∣∣∣∣Ht1 (f̂)
Ht0 (f̂)

/
Ht1 (f)

Ht0 (f)
· · · Htn (f̂

[n])

Ht0 (f̂
[n])

/
Htn (f)
Ht0 (f)

∣∣ .

It is easy to see that σ
(
Hi(f)
Hj(f)

)
≤ σ(f) = 0 for all i, j. Therefore, by Lemma

11, we have∫
Sm(r)

log+ |Cp(Hj(f) : j ∈ R0)|
Πtj∈R0 |(Htj (f̂

[j]))|
ηm(z) ≤

n∑
j=1

o

(
T

(
r,
Htj (f̂

[j])

Ht0(f̂ [j])

))
= o (T (r, f))

on a set of logarithmic density 1. Hence, together this with (3.14), we get

(3.15)

∑
j∈S

ω(j)Tf (r) +
∑
tj∈R

ω(tj)Tf̂ [j](r)−
n∑
j=0

Tf̂ [j](r)

≤
∑
j∈Q

ω(j)N(r, ν0Hj(f))−N(r, ν0Cp(f))) + o (T (r, f))

on a set of logarithmic density 1. From (3.15) and Lemma 12, we get
(3.16)(∑
j∈Q

ω(j)− n− 1
)
T (r, f) ≤

∑
j∈Q

ω(j)N(r, ν0Hj(f))−N(r, ν0Cp(f)))+o (T (r, f))

on a set of logarithmic density 1.
By (i), (ii) and (iv) of Lemma 14, the inequality (3.16) implies that the

below inequality holds on a set of logarithmic density 1

(q − 2N + n− 1)T (r, f) ≤
∑
j∈Q

N(r, ν0Hj(f))−
N

n
N(r, ν0Cp(f))) + o (T (r, f)) .

The proof of Theorem 1 is completed. �



SECOND MAIN THEOREM AND UNIQUENESS PROBLEM... 221

4. The proof of Theorem 2

Let z0 be a n-successive zero with separation p of Hj(f) respect to the
rescaling τp(z) = pz for some j ∈ {1, . . . , q}. Since {Hj}qj=1 is in N -subgeneral

position, there are at most N functions Hj(f) vanishing at z0. Without loss of
generality, we may assume that z0 is a n-successive with separation p zero of
Hj(f) respect to the rescaling τp(z) = pz with all j ∈ A and z0 is a n-aperiodic
zero with separation p of Hj(f) respect to the rescaling τp(z) = pz with all
j ∈ B and z0 is not a zero of Hj(f) with all j 6∈ A ∪ B, where |A ∪ B| = N .
Take R ⊂ {1, . . . , q} containing A such that |R| = N+1 and R∩B = ∅. Choose
subset R1 ⊂ R with |R1| = rank{Hj}j∈R1 = n+ 1 such that R1 satisfies (v) of

Lemma 14 with respect to numbers {λj = e
ν0
Hj(f)

(z0)}qj=1. Then we have∏
j∈R

e
ω(j)ν0

Hj(f)
(z0) ≤

∏
j∈R1

e
ν0
Hj(f)

(z0).

Therefore,

(4.17)

∑
j 6∈B

ω(j)ν0Hj(f)(z0) ≤
∑

j∈A∩R1

ν0Hj(f)(z0).

By rearrangement index if necessary, we may assume that R1 = {t0, . . . , tn}
and A ∩R1 = {t0, . . . , tk} with 0 ≤ k ≤ n. Since rank{Htj}nj=0 = n+ 1, there
exists a nonzero constant CR1 such that

Cp(f) = CR1 · Cp(Ht0(f), . . . ,Htn(f)).

This deduces that ν0Cp(f) = ν0Cp(Ht0 (f),...,Htn (f))
. We have

Cp(Ht0(f), . . . ,Htn(f))

= Ht0(f) · · ·Htk(f)

×

∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 Htk+1
(f) · · · Htn(f)

Ht0 (f̂)

Ht0 (f)
· · · Htk (f̂)

Htk (f)
Htk+1

(f̂) · · · Htn(f̂)

...
...

...
...

...
...

Ht0 (f̂
[n])

Ht0 (f)
· · · Htk (f̂

[n])

Htn (f)
Htk+1

(f̂ [n]) · · · Htn(f̂ [n])

∣∣∣∣∣∣∣∣∣∣∣
.

It follows that

ν0Cp(f)(z0) ≥ ν0Ht0 (f)···Htk (f)(z0) =

k∑
j=0

ν0Htj (f)
(z0).

Together this inequality with (4.17), we get

ν0Cp(f)(z0) ≥
∑
j 6∈B

ω(j)ν0Hj(f)(z0).
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This, by going through all points z0 ∈ Cm and by definitions of N̂ [n,p](r,Hj(f))
implies that

q∑
j=1

ω(j)N(r, ν0Hj(f))−N(r, ν0Cp(f)) ≤
q∑
j=1

ω(j)N̂ [n,p](r,Hj(f)).

This and (3.16) yield

(

q∑
j=1

ω(j)−n− 1)T (r, f) ≤
q∑
j=1

ω(j)N̂ [n,p](r,Hj(f)) + o (T (r, f))

on a set of logarithmic density 1. By (i), (ii) and (iv) of Lemma 14, the above
inequality implies that

(q − 2N + n− 1)T (r, f) ≤
q∑
j=1

N̂ [n,p](r,Hj(f)) + o (T (r, f))

on a set of logarithmic density 1. The proof of Theorem 2 is completed.

5. The proof of Theorem 3

Lemma 16. Let f : Cm → Pn(C) be a meromorphic mapping with reduce
presentation f = (f0 : · · · : fn) and let p = (p1, . . . , pm) ∈ Cm with pj 6= 0, 1 for
all j. Assume that σ(f) = 0 and all zeros of f0, . . . , fn are forward invariant

with respect to the rescaling τp(z) = pz. If fi
fj
6∈ φ0p for all i, j ∈ {0, . . . , n} such

that i 6= j, then f0, . . . , fn are linearly independent over the field φ0p.

Proof. Assume that f is linearly degenerate over φ0p. Without loss generality we

assume that there exist ϕ0, . . . , ϕn ∈ φ0p\{0} such that ϕ0f0+· · ·+ϕn−1fn−1 =
ϕnfn. Since all zeros of f0, . . . , fn are forward invariant with respect to the
rescaling τp(z) = pz and since ϕ0, . . . , ϕn ∈ φ0p \{0}, we can choose a meromor-
phic h such that hϕ0f0, . . . , hϕnfn are holomorphic functions on Cm without
common zeros and such that preimages of all zeros of hϕ0f0, . . . , hϕnfn are
forward invariant with respect to the rescaling τp(z) = pz. Then we get

(5.18) lim
r→∞

log+
(
N(r, ν0h) +N(r, ν∞h )

)
log r

= 0

and hϕ0f0, . . . , hϕn−1fn−1 can not have any common zeros.
Put gi = hϕifi for 0 ≤ i ≤ n and G = (g0 : · · · : gn−1) is a holomorphic

mapping of Cm into Pn−1(C). Then by definition of characteristic function, we
have

T (r,G) =

∫
Sm(r)

log||G||ηm(z) +O(1)
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≤
∫

Sm(r)

log|h|ηm(z) +

∫
Sm(r)

log

n−1∑
j=0

|fj |2
 1

2

ηm(z)

+

n−1∑
j=0

∫
Sm(r)

log|ϕj |ηm(z) +O(1)

≤ N(r, ν0h) +N(r, ν∞h ) + Tf (r) +

n−1∑
j=0

Tϕj (r) +O(1).

This together (5.18) deduce that σ(G) = 0.
Assume that G : Cm → Pn(C) is linearly nondegenerate over φ0p. Since

Lemma 13, it follows that Cp(g0, . . . , gn−1) 6≡ 0. Take n+ 1 hyperplanes

H0 : ω0 = 0, H1 : ω1 = 0, . . . ,Hn−1 : ωn−1 = 0

and

Hn : ω0 + · · ·+ ωn−1 = 0,

where (ω0, . . . , ωn−1) is homogeneous coordinate system of Pn−1(C). So
(G,Hj) = gj for 0 ≤ j ≤ n − 1 and (G,Hn) = g0 + · · · + gn−1 = hϕnfn = gn.
Obviously, {Hj}nj=0 are in general position in Pn−1(C). Applying Theorem 2,
we have

T (r,G) ≤
n∑
j=0

N̂ [n,p](r,Hj(G)) + o(T (r,G))

on a set of logarithmic density 1. Since all zeros of Hj(G) = (G,Hj) =
gj (0 ≤ j ≤ n) are forward invariant with respect to the rescaling τp(z) = pz,

N̂ [n,p](r,Hj(G)) ≡ 0 and therefore, T (r,G) ≤ o(T (r,G)) on a set of logarithmic
density 1. This is a contradiction. It follows that G is linearly dependent over
φ0p. Thus there exist ψ0, . . . , ψn−1 satisfying

ψ0f0 + · · ·+ ψn−2fn−2 = ψn−1fn−1

and not all ψi are identically zero. By continuing in this fashion it follows after
at most n − 2 time, we have fi

fj
∈ φ0p for some i 6= j. This is contradiction.

Hence, f is linearly nondegenerate over φ0p. We finish the proof of Lemma
16. �

Lemma 17. Let f = (f0 : · · · : fn) be a meromorphic mapping of Cm to
Pn(C) such that σ(f) = 0 and let p = (p1, . . . , pm) ∈ Cm with pj 6= 0, 1 for
all j. Assume that all zeros of f0, . . . , fn are forward invariant with respect to
the rescaling τp(z) = pz. Let S1 ∪ · · · ∪ Sl be the partion of {0, . . . , n} formed

in such a way that i and j are in the same class Sk if only if fi
fj
∈ φ0p. If

f0 + · · ·+ fn = 0, then
∑
j∈Sk

fj = 0 for all k ∈ {1, . . . , l}.
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Proof. For each i ∈ Sk, k ∈ {1, . . . , l} we have fi = ϕi,jkfjk for ϕi,jk ∈ φ0p
whenever the i, jk ∈ Sk. It implies that

0 =

n∑
k=0

fk =

l∑
k=1

∑
i∈Sk

ϕi,jkfjk =

l∑
k=1

Bkfjk ,

where Bk =
∑
i∈Sk

ϕi,jk ∈ φ0p. This deduces that fj1 , . . . , fjl are linearly depen-

dent over φ0p if not all Bk are identically zeros. This contradicts to Lemma 16.
Then Bk ≡ 0 for all k ∈ {1, . . . , l}. Thus

∑
i∈Sk

fi =
∑
i∈Sk

ϕi,jkfjk = Bkfik ≡ 0

for all k ∈ {1, . . . , l}. Lemma 17 is proved. �

Proof of Theorem 3. By assumptions of the theorem, holomorphic functions

Gj = Hj(f) =

n∑
i=0

ajifi,

satisfying

{τp(G−1j (0))} ⊂ {G−1j (0)}, j ∈ {1, . . . , q},
where Hj :

∑n
i=0 ajiωi = 0, and {·} denotes a multiset with counting multi-

plicities of its elements. We say that i ∼ j if Gi = αGj for some α ∈ φ0p \ {0}.
Therefore, the set of indexes {1, . . . , q} may be split into disjoint equivalence
classes Sj ,

{1, . . . , q} = ∪lj=1Sj

for some l ≤ q.
The first, we assume that Sj has as most q −N − 1 elements for some j ∈

{1, . . . , l}. Put R = Q\Sj then, |R| ≥ N+1. Let s0 ∈ Sj and put U = R∪{s0}.
Without loss of generality, we may assume that U = {s0, . . . , sN+1}. Then since
the {Hj}qj=1 are in N -subgeneral position, there exist αj ∈ C \ {0} such that∑N+1
j=0 αjHsj = 0 and therefore, we have

∑N+1
j=0 αjHsj (f) =

∑N+1
j=0 αjGsj ≡ 0.

By assumptions of the theorem, we can see that all zeros of αjGsj are forward
invariant with respect to the rescaling τp(z) = pz. We have

G := (α0Gs0 : · · · : αN+1GsN+1
)

is a meromorphic mapping of Cm into PN+1(C) with its order σ(G) ≤ σ(f) = 0.
By Lemma 17, we have α0Gs0 ≡ 0. Hence, Hs0(f) ≡ 0. This implies that the
image f(Cm) is included in the hyperplane Hs0 of Pn(C). We may consider f
be a meromorphic mapping of Cm into Pn−1(C).

The second, we assume that Sj has as least q − N elements for all j ∈
{1, . . . , l}. Then

l ≤ q

q −N
.

Since {Hj}qj=1 is in N -subgeneral position, we can choose a subset V ⊂ {1, . . .,
q} with |V | = n+1 such that {Hj}j∈V is linearly independent. Put Vj = V ∩Sj
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for each 1 ≤ j ≤ l. Then we have V = ∪lj=1Vj . Since each Vj gives raise to

|Vj | − 1 equations over the field φ0p, it is easy to see that there are at least

l∑
j=1

(|Vj | − 1) = n+ 1− l ≥ n+ 1− q

q −N
= n− N

q −N

linearly independent relations over the field φ0p. It follows that the image of

f is contained in a projective linear subspace over φ0p of dimension ≤
[

N
q−N

]
.

Obviously, if q ≥ 2N + 1, then
[

N
q−N

]
= 0, and therefore f(z) = f(pz). The

Theorem 3 is proved.
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