SECOND MAIN THEOREM AND UNIQUENESS PROBLEM OF ZERO-ORDER MEROMORPHIC MAPPINGS FOR HYPERPLANES IN SUBGENERAL POSITION

Thi Tuyet Luong, Dang Tuyen Nguyen, and Duc Thoan Pham

Abstract

In this paper, we show the Second Main Theorems for zeroorder meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ intersecting hyperplanes in subgeneral position without truncated multiplicity by considering the p-Casorati determinant with $p \in \mathbb{C}^{m}$ instead of its Wronskian determinant. As an application, we give some unicity theorems for meromorphic mapping under the growth condition "order $=0$ ". The results obtained include p-shift analogues of the Second Main Theorem of Nevanlinna theory and Picard's theorem.

1. Introduction

In 2006, R. Halburd-R. Korhonen [7] considered the Second Main Theorem for complex difference operator with finite order in complex plane. Later, in [8] and [18], difference analogues of the Second Main Theorem for holomorphic curves in $\mathbb{P}^{n}(\mathbb{C})$ were obtained independently, and in [2] and [12], difference analogues of the Second Main Theorem for meromorphic functions on \mathbb{C}^{m} were obtained. In particular, Nevanlinna theory for the p-difference operator can be found in $[1,11,15-17,19]$.

Recently, T. B. Cao-R. Korhonen [3] obtained a new natural difference analogue of H. Cartan's Theorem for meromorphic mapping $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$. In which, the counting function $N\left(r, \nu_{W(f)}^{0}\right)$ of the Wronskian determinant of f is replaced by the counting function $N\left(r, \nu_{C^{c}(f)}^{0}\right)$ of the Casorati determinant of f (it was called the finite difference Wronskian determinant in [18]) and in addition, the hyper-order of f is strictly less than one.

Our first aim in this paper is to prove a new natural p-difference analogue Second Main Theorem for zero-order meromorphic mapping by considering p Casorati determinant. For our purpose, we now recall some notations.

[^0]Let $p \in \mathbb{C}^{m}$, denote by \mathcal{M}_{m} the set of all meromorphic functions on \mathbb{C}^{m}, denote by ϕ_{p} the set of all meromorphic functions of \mathcal{M}_{m} satisfying $f(z)=$ $f(p z)$ and denote by ϕ_{p}^{0} the set of all meromorphic functions of ϕ_{p} having their zero-orders. Obviously, $\phi_{p}^{0} \subset \phi_{p} \subset \mathcal{M}_{m}$.

Definition 1. Let f be a meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ with reduced representation $f=\left(f_{0}: \cdots: f_{n}\right)$. Then the map f is said to be linearly nondegenerate over field ϕ_{p}^{0} if the entire functions f_{0}, \ldots, f_{n} are linearly independent over field ϕ_{p}^{0}.

For $c=\left(c_{1}, \ldots, c_{m}\right)$ and $p=\left(p_{1}, \ldots, p_{m}\right)$ with $p_{i} \neq 0(1 \leq i \leq m)$ and $z=$ $\left(z_{1}, \ldots, z_{m}\right)$, we write $c+z=\left(c_{1}+z_{1}, \ldots, c_{m}+z_{m}\right)$ and $p z=\left(p_{1} z_{1}, \ldots, p_{m} z_{m}\right)$. Denote
$f(z) \equiv f:=\bar{f}^{[0]}, f(z+c) \equiv \bar{f}:=\bar{f}^{[1]}, f(z+2 c) \equiv \overline{\bar{f}}:=\bar{f}^{[2]}, \ldots, f(z+k c) \equiv \bar{f}^{[k]}$
and

$$
f(z) \equiv f:=\hat{f}^{[0]}, f(p z) \equiv \hat{f}:=\hat{f}^{[1]}, f\left(p^{2} z\right) \equiv \hat{\hat{f}}:=\hat{f}^{[2]}, \ldots, f\left(p^{k} z\right) \equiv \hat{f}^{[k]}
$$

Let

$$
D^{(j)}=\left(\frac{\partial}{\partial z_{1}}\right)^{\alpha_{1}(j)} \cdots\left(\frac{\partial}{\partial z_{m}}\right)^{\alpha_{m}(j)}
$$

be a partial differentiation operator of order at most $j=\sum_{k=1}^{m} \alpha_{k}(j)$. Similarly as the Wronskian determinant

$$
W(f)=W\left(f_{0}, \ldots, f_{n}\right)=\left|\begin{array}{cccc}
f_{0} & f_{1} & \cdots & f_{n} \\
D^{(1)} f_{0} & D^{(1)} f_{1} & \cdots & D^{(1)} f_{n} \\
\vdots & \vdots & \vdots & \vdots \\
D^{(n)} f_{0} & D^{(n)} f_{1} & \cdots & D^{(n)} f_{n}
\end{array}\right|
$$

the Casorati determinant is defined by

$$
C^{c}(f)=C^{c}\left(f_{0}, \ldots, f_{n}\right)=\left|\begin{array}{cccc}
f_{0} & f_{1} & \cdots & f_{n} \\
\bar{f}_{0} & \bar{f}_{1} & \cdots & \bar{f}_{n} \\
\vdots & \vdots & \vdots & \vdots \\
\bar{f}_{0}^{[n]} & \bar{f}_{1}^{[n]} & \cdots & \bar{f}_{n}^{[n]}
\end{array}\right|
$$

and the p-Casorati determinant is defined by

$$
C_{p}(f)=C_{p}\left(f_{0}, \ldots, f_{n}\right)=\left|\begin{array}{cccc}
f_{0} & f_{1} & \cdots & f_{n} \\
\hat{f}_{0} & \hat{f}_{1} & \cdots & \hat{f}_{n} \\
\vdots & \vdots & \vdots & \vdots \\
\hat{f}_{0}^{[n]} & \hat{f}_{1}^{[n]} & \cdots & \hat{f}_{n}^{[n]}
\end{array}\right| .
$$

Definition 2. Let $\left\{H_{j}\right\}_{j=1}^{q}$ be the hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$. Let $N \geq n$ and $q \geq N+1$. The family $\left\{H_{j}\right\}_{j=1}^{q}$ is said to be in N-subgeneral position in $\mathbb{P}^{n}(\mathbb{C})$
if for every subset $R \subset\{1, \ldots, q\}$ with the cardinality $|R|=N+1$, then

$$
\bigcap_{j \in R} H_{j}=\emptyset
$$

If they are in n-subgeneral position, we simply say that they are in general position.

Consider f be a meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(C)$ with reduced representation $f=\left(f_{0}: \cdots: f_{n}\right)$ and a hyperplane $H: a_{0} \omega_{0}+\cdots+a_{n} \omega_{n}=0$. We define

$$
(f, H)=H(f):=a_{0} f_{0}+\cdots+a_{n} f_{n}
$$

which is a holomorphic function on \mathbb{C}^{m}.
Using above notations, we have the p-difference analogue of H. Cartan's Theorem [4] as follows.

Theorem 1. Let $p=\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{C}^{m}$ with $p_{j} \neq 0$ for all $j \in\{1, \ldots, m\}$ and let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly nondegenerate meromorphic mapping over the field ϕ_{p}^{0}. Let $H_{j}(1 \leq j \leq q)$ be q hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$, located in N-subgeneral position. Assume that f has the zero-order. Then we have

$$
(q-2 N+n-1) T(r, f) \leq \sum_{j=1}^{q} N\left(r, \nu_{H_{j}(f)}^{0}\right)-\frac{N}{n} N\left(r, \nu_{C_{p}(f)}^{0}\right)+o(T(r, f))
$$

for all r on a set of logarithmic density 1.
Here, by ν_{φ}^{0} we denote the zero-divisor of holomorphic function φ from \mathbb{C}^{m} into \mathbb{C}.

Definition 3. Let $k \in \mathbb{N}, p=\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{C}^{m}$ with $p_{j} \neq 0$ for all $j \in$ $\{1, \ldots, m\}$ and $a \in \mathbb{C}$. An a-point z_{0} of meromorphic function $h(z)$ is said that to be k-successive with separated p respect to the rescaling $\tau_{p}(z)=p z$, if the k functions $h\left(p^{l} z\right),(l=1, \ldots, k)$ take the value a at $z=z_{0}$ with multiplicity not less than that of $h(z)$ there. All the other a-points of $h(z)$ are called k-aperiodic of pace p respect to the rescaling $\tau_{p}(z)=p z$.

Consider H be a hyperplane. By $\hat{N}^{[k, p]}(r, H(f))$, we denote the counting function of k-aperiodic zeros of the function $H(f)$ of pace p respect to the rescaling $\tau_{p}(z)=p z$.

Note that $\hat{N}^{[k, p]}(r, H(f)) \equiv 0$ when all zeros of $H(f)$ with taking their multiplicities into account are located periodically with period p respect to the rescal$\operatorname{ing} \tau_{p}(z)=p z$. This is also the case when the hyperplane H is forward invariant by f with respect to the rescaling $\tau_{p}(z)=p z$, i.e., $\tau_{p}\left(f^{-1}(H)\right) \subset f^{-1}(H)$ and $f^{-1}(H)$ is considered to be multi-sets in which each point is repeated according to its multiplicity. Then we have the result as follows.
Theorem 2. Let $p=\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{C}^{m}$ with $p_{j} \neq 0$ for all $j \in\{1, \ldots, m\}$ and let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly nondegenerate meromorphic mapping
over the field ϕ_{p}^{0}. Let $H_{j}(1 \leq j \leq q)$ be q hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$, located in N-subgeneral position. Assume that f has the zero-order. Then we have

$$
(q-2 N+n-1) T(r, f) \leq \sum_{j=1}^{q} \hat{N}^{[n, p]}\left(r, H_{j}(f)\right)+o(T(r, f))
$$

for all r on a set of logarithmic density 1.
The uniqueness problem for meromorphic mappings was first investigated by R. Nevanlinna. In 1975, H. Fujimoto [5] generalized Nevanlinnas five-value theorem to the case of higher dimension by showing that if two linearly nondegenerate meromorphic mappings $f, g: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ have the same inverse images counted with multiplicities for $q \geq 3 n+2$ hyperplanes in general position in $\mathbb{P}^{n}(\mathbb{C})$, then $f \equiv g$.

By considering the uniqueness problem for holomorphic curves $f(z)$ and $f(z+c)$ also for holomorphic curves $f(z)$ and $f(p z)$ intersecting hyperplanes in general position, R. Halburd, R. Korhonen, K. Tohge [8, Theorem 1.1 and Theorem 6.1] obtained a difference analogue of Picard's theorem. Recently, T. B. Cao, R. Korhonen [3] generalized the this result [8, Theorem 1.1] for the case of meromorphic mappings $f(z)$ and $f(z+c)$ intersecting hyperplanes in subgeneral position.

Our final aim in this paper is to extend the result in [8, Theorem 6.1] to meromorphic mappings $f(z)$ and $f(p z)$ of \mathbb{C}^{m} into $\mathbb{P}^{n}(C)$ intersecting hyperplanes in N-subgeneral position. Our result is a difference analogue of Picard's theorem. Namely, we will prove the following theorem.

Theorem 3. Let f be a zero-order meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ and let $p=\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{C}^{m}$ with $p_{j} \neq 0,1$ for all $j \in\{1, \ldots, m\}$. Assume that f is forward invariant over q hyperplanes in N-subgeneral position in $\mathbb{P}^{n}(\mathbb{C})$ respect to the rescaling $\tau_{p}(z)=p z$. Then the image of f is contained in a projective linear subspace over ϕ_{p}^{0} of dimension $\leq\left[\frac{N}{q-N}\right]$. Special, if $q \geq 2 N+1$, then $f(z)=f(p z)$.

Note that when $\left|p_{i}\right| \neq 1$ for all $i \in\{1, \ldots, m\}$, then $f(z)=f(p z)$ implies that f must be a constant mapping. Immediately, we have the following corollary.

Corollary 4. Let f be a zero-order meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ and let $p=\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{C}^{m}$ satisfying $\left|p_{j}\right| \neq 0,1$ for all $j \in\{1, \ldots, m\}$. Assume that f is forward invariant over q hyperplanes in general position in $\mathbb{P}^{n}(\mathbb{C})$ respect to the rescaling $\tau_{p}(z)=p z$. If $q \geq 2 n+1$, then f is constant.

2. Preliminaries and auxiliary lemmas

2.1. We set $\|z\|=\left(\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)^{1 / 2}$ for $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and define

$$
B_{m}(r):=\left\{z \in \mathbb{C}^{m}:\|z\|<r\right\}, \quad S_{m}(r):=\left\{z \in \mathbb{C}^{m}:\|z\|=r\right\}(0<r<\infty)
$$

Define

$$
\begin{gathered}
\sigma_{m}(z):=\left(d d^{c}\|z\|^{2}\right)^{m-1} \quad \text { and } \\
\eta_{m}(z):=d^{c} \log \|z\|^{2} \wedge\left(d d^{c} \log \|z\|^{2}\right)^{m-1} \text { on } \quad \mathbb{C}^{m} \backslash\{0\} .
\end{gathered}
$$

2.2. Let F be a nonzero holomorphic function on a domain Ω in \mathbb{C}^{m}. For a set $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of nonnegative integers, we set $|\alpha|=\alpha_{1}+\cdots+\alpha_{m}$ and $\mathcal{D}^{\alpha} F=\frac{\partial^{|\alpha|}{ }_{F}}{\partial^{\alpha} 1 z_{1} \cdots \partial^{\alpha} z_{m}}$. We define the map $\nu_{F}: \Omega \rightarrow \mathbb{Z}$ by

$$
\nu_{F}(z):=\max \left\{n: \mathcal{D}^{\alpha} F(z)=0 \text { for all } \alpha \text { with }|\alpha|<n\right\}(z \in \Omega)
$$

We mean by a divisor on a domain Ω in \mathbb{C}^{m} a map $\nu: \Omega \rightarrow \mathbb{Z}$ such that, for each $a \in \Omega$, there are nonzero holomorphic functions F and G on a connected neighbourhood $U \subset \Omega$ of a such that $\nu(z)=\nu_{F}(z)-\nu_{G}(z)$ for each $z \in U$ outside an analytic set of dimension $\leq m-2$. Two divisors are regarded as the same if they are identical outside an analytic set of dimension $\leq m-2$. For a divisor ν on Ω we set $|\nu|:=\overline{\{z: \nu(z) \neq 0\}}$, which is a purely $(m-1)$-dimensional analytic subset of Ω or empty.

Take a nonzero meromorphic function φ on a domain Ω in \mathbb{C}^{n}. For each $a \in \Omega$, we choose nonzero holomorphic functions F and G on a neighbourhood $U \subset \Omega$ such that $\varphi=\frac{F}{G}$ on U and $\operatorname{dim}\left(F^{-1}(0) \cap G^{-1}(0)\right) \leq m-2$, and we define the divisors $\nu_{\varphi}^{0}, \nu_{\varphi}^{\infty}$ by $\nu_{\varphi}^{0}:=\nu_{F}, \nu_{\varphi}^{\infty}:=\nu_{G}$, which are independent of choices of F and G and so globally well-defined on Ω.
2.3. For a divisor ν on \mathbb{C}^{m}, we define the counting functions of ν by

$$
n(t)= \begin{cases}\int_{|\nu| \cap B(t)} \nu(z) \sigma_{m-1} & \text { if } m \geq 2 \\ \sum_{|z| \leq t} \nu(z) & \text { if } m=1\end{cases}
$$

and

$$
N(r, \nu)=\int_{1}^{r} \frac{n(t)}{t^{2 m-1}} d t \quad(1<r<\infty)
$$

Let $\varphi: \mathbb{C}^{m} \longrightarrow \mathbb{C}$ be a meromorphic function. Define

$$
N_{\varphi}(r)=N\left(r, \nu_{\varphi}\right)
$$

2.4. Let $f: \mathbb{C}^{m} \longrightarrow \mathbb{P}^{n}(\mathbb{C})$ be a meromorphic mapping. For arbitrarily fixed homogeneous coordinates $\left(w_{0}: \cdots: w_{n}\right)$ on $\mathbb{P}^{n}(\mathbb{C})$, we take a reduced representation $f=\left(f_{0}: \cdots: f_{n}\right)$, which means that each f_{i} is a holomorphic function on \mathbb{C}^{m} and $f(z)=\left(f_{0}(z): \cdots: f_{n}(z)\right)$ outside the analytic set $I(f)=\left\{z \in \mathbb{C}^{m}: f_{0}(z)=\cdots=f_{n}(z)=0\right\}$ of codimension ≥ 2. Set $\|f\|=\left(\sum_{j=0}^{n}\left|f_{j}\right|^{2}\right)^{1 / 2}$. The characteristic function of f is defined by

$$
\begin{aligned}
T(r, f) & =\int_{r_{0}}^{r} \frac{d t}{2^{m-1}} \int_{B_{m}(r)} d d^{c} \log \|f\|^{2} \wedge \sigma_{m}(z) \\
& =\int_{S_{m}(r)} \log \|f\| \eta_{m}-\int_{S_{m}\left(r_{0}\right)} \log \|f\| \eta_{m}(z)
\end{aligned}
$$

Note that $T(r, f)$ is independent of the choice of the representation of f. The order and hyperorder of f are respectively defined by

$$
\sigma(f):=\limsup _{r \rightarrow \infty} \frac{\log ^{+} T(r, f)}{\log r} \text { and } \zeta(f):=\limsup _{r \rightarrow \infty} \frac{\log ^{+} \log ^{+} T(r, f)}{\log r},
$$

where $\log ^{+} x:=\max \{\log x, 0\}$ for any $x>0$.
2.5. Let f be a meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(C)$ with reduced representation $f=\left(f_{0}: \cdots: f_{n}\right)$ and a hyperplane $H: a_{0} \omega_{0}+\cdots+a_{n} \omega_{n}=0$ satisfies

$$
(f, H)=a_{0} f_{0}+\cdots+a_{n} f_{n} \not \equiv 0
$$

The proximity function is defined as

$$
m_{f, H}(r):=\int_{S_{m}(r)} \log ^{+} \frac{\|f\| \cdot\|H\|}{|(f, H)|} \eta_{m}(z)+\int_{S_{m}(1)} \log ^{+} \frac{\|f\| \cdot\|H\|}{|(f, H)|} \eta_{m}(z)
$$

We have the First Main Theorem of Nevanlinna theory

$$
m_{f, H}(r)+N\left(r, \nu_{H(f)}^{0}\right)=T(r, f)+O(1)
$$

where $O(1)$ is a constant independent of r.
2.6. Let φ be a nonzero meromorphic function on \mathbb{C}^{m}, which is occationally regarded as a meromorphic map into $\mathbb{P}^{1}(\mathbb{C})$. The proximity function of φ is defined by

$$
m(r, \varphi):=\int_{S_{m}(r)} \log ^{+}|\varphi| \eta_{m}
$$

Lemma 5 ([1, Lemmas 5.1, 5.2, and 5.3]). Let f be a non-constant zero-order meromorphic function of \mathbb{C} into \mathbb{C} and let $p \in \mathbb{C} \backslash\{0\}$. Then

$$
m\left(r, \frac{f(p z)}{f(z)}\right)<\frac{4 D_{1}+2 D_{2}}{2^{n}} T(r, f(z))
$$

on a set of logarithmic density 1 for all $n \in \mathbb{N}$, where D_{1}, D_{2} are positive constants.
Lemma 6 ([9, Lemma 4]). If $T: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is an increasing function such that order

$$
\sigma(T)=\varlimsup_{r \rightarrow \infty} \frac{\log T(r)}{\log r}=0
$$

then the set

$$
E:=\left\{r \in \mathbb{R}^{+}: T\left(C_{1} r\right) \geq C_{2} T(r)\right\}
$$

has logarithmic density 0 for all $C_{1}>1$ and $C_{2}>1$.
Lemma 7 ([1, Lemma 5.4]). Let $T: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be an increasing function and $U: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$. If there exits a decreasing sequence $\left\{c_{n}\right\}_{n \in \mathbb{N}}$ such that $c_{n} \rightarrow 0$ as $n \rightarrow \infty$ and for all $n \in \mathbb{N}$, the set

$$
F_{n}=\left\{r \geq 1: U(r)<c_{n} T(r)\right\}
$$

has logarithmic density 1, then $U(r)=o(T(r))$ on a set of logarithmic density 1.

Lemma 8. Let T be a function as in Lemma 6 and let $p \in \mathbb{R}^{+}$. Then we have

$$
T(p r)=T(r)+o(T(r))
$$

on a set of logarithmic density 1.
Proof. Case 1: $p \leq 1$. Since $T(r)$ is an increasing function, we have $T(p r) \leq$ $T(r)$ for all $r>0$. Obviously, the conclusion holds.
Case 2: $p>1$. By Lemma 6, for each $n \in \mathbb{N}$, we have

$$
E_{n}:=\left\{r \geq 1: T(p r)<\left(1+\frac{1}{n}\right) T(r)\right\}
$$

has logarithmic density 1 . Put $U(r)=T(p r)-T(r)$, we deduce that

$$
0<U(r)<\frac{1}{n} T(r)
$$

on a set of logarithmic density 1. It follows from Lemma 7 that $U(r)=o(T(r))$ on a set of logarithmic density 1 . Therefore, we get

$$
\begin{equation*}
T(p r)=T(r)+o(T(r)) \tag{2.1}
\end{equation*}
$$

on a set of logarithmic density 1 . Therefore, the proof of the Lemma 8 is finished.

For each $\omega \in \bar{B}_{m-1}(r)$, we define a function $p_{r}(\omega)=\sqrt{r^{2}-|\omega|^{2}}$. We need the following lemma from W. Stoll.
Lemma 9 ([10]). Let $r>0$ and let h be a function on $S_{m}(r)$ such that $h \eta_{m}$ is integrable over $S_{m}(r)$. Then

$$
\int_{S_{m}(r)} h(z) \eta_{m}(z)=\frac{1}{r^{2 m-2}} \int_{\bar{B}_{m-1}(r)} \sigma_{m-1}(\omega) \int_{S_{1}\left(P_{r}(\omega)\right)} h(\omega, \zeta) \eta_{1}(\zeta) .
$$

Consider a non-constant meromorphic function f on \mathbb{C}^{m}, take $\omega \in \mathbb{C}^{m-1}$ and define $f_{\omega}(z):=f(\omega, z)$ on \mathbb{C}. We will prove the following lemma.

Lemma 10. Let f be a meromorphic function on \mathbb{C}^{m} of zero-order such that $f(0) \neq 0, \infty$ and let $\tilde{p}_{j}:=\left(1, \ldots, p_{j}, \ldots, 1\right)$ with $p_{j} \neq 0$. Then

$$
m\left(r, \frac{f\left(\tilde{p}_{j} z\right)}{f(z)}\right)=\int_{S_{m}(r)} \log ^{+}\left|\frac{f\left(\tilde{p}_{j} z\right)}{f(z)}\right| \eta_{m}(z)=o(T(r, f(z)))
$$

on a set of logarithmic density 1.
Proof. By applying Lemma 9 for $h(z)=\log ^{+}\left|\frac{f\left(\tilde{p}_{j} z\right)}{f(z)}\right|$, we have

$$
m\left(r, \frac{f\left(\tilde{p}_{j} z\right)}{f(z)}\right)=\int_{S_{m}(r)} \log ^{+}\left|\frac{f\left(\tilde{p}_{j} z\right)}{f(z)}\right| \eta_{m}(z)
$$

$$
\begin{aligned}
& =\frac{1}{r^{2 m-2}} \int_{\bar{B}_{m-1}(r)} \sigma_{m-1}(\omega) \int_{S_{1}\left(P_{r}(\omega)\right)} \log ^{+}\left|\frac{f_{\omega}\left(p_{j} z_{j}\right)}{f_{\omega}\left(z_{j}\right)}\right| \eta_{1}(\zeta) \\
& =\frac{1}{r^{2 m-2}} \int_{\bar{B}_{m-1}(r)} m\left(P_{r}(\omega), \frac{f_{\omega}\left(p_{j} z_{j}\right)}{f_{\omega}\left(z_{j}\right)}\right) \sigma_{m-1}(\omega) .
\end{aligned}
$$

By Lemma 5 , there exist two positive constants D_{1} and D_{2} which are independent of $P_{r}(\omega)$ such that for all $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& m\left(r, \frac{f\left(\tilde{p}_{j} z\right)}{f(z)}\right) \\
< & \frac{1}{r^{2 m-2}} \int \overline{\bar{B}}_{m-1}(r) \\
= & \left.\frac{4 D_{1}+2 D_{2}}{2^{n}} \cdot \frac{1}{r^{2 m-2}} \int D_{\bar{B}_{m-1}(r)} \sigma_{m-1}(\omega) \int_{S_{1}\left(P_{r}(\omega)\right)} \log \left\|f_{\omega}\left(z_{j}\right)\right\| \eta_{1}\left(z_{j}\right)+O(1), f_{\omega}\left(z_{j}\right)\right) \sigma_{m-1}(\omega) \\
= & \frac{4 D_{1}+2 D_{2}}{2^{n}} \int_{S_{m}(r)} \log \left\|f\left(\omega, z_{j}\right)\right\| \eta_{m}(z)+O(1) \\
= & \frac{4 D_{1}+2 D_{2}}{2^{n}} T(r, f(z))+O(1)
\end{aligned}
$$

on a set of logarithmic density 1 for all $n \in \mathbb{N}$. By applying the Lemma 7, we get

$$
m\left(r, \frac{f\left(\tilde{p}_{j} z\right)}{f(z)}\right)=o(T(r, f(z)))
$$

on a set of logarithmic density 1 . We finish the proof of Lemma 10.
The lemma on the Logarithmic Derivative [4-6,14] plays an important role in Nevanlinna theory. Here, it is replaced by the following lemma.

Lemma 11. Let f be a non-constant zero-order meromorphic mapping of \mathbb{C}^{m} into \mathbb{C} and $p=\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{C}^{m}$ with $p_{j} \neq 0$ for all j. Then

$$
m\left(r, \frac{f(p z)}{f(z)}\right)=o(T(r, f(z)))
$$

on a set of logarithmic density 1.
Proof. Since f is a meromorphic function on \mathbb{C}^{m} of zero-order, according to Lemma 10, it follows that

$$
m\left(r, \frac{f(p z)}{f(z)}\right)=\int_{S_{m}(r)} \log ^{+}\left|\frac{f(p z)}{f(z)}\right| \eta_{m}(z)
$$

$$
\begin{aligned}
& =\int_{S_{m}(r)} \log ^{+} \prod_{k=1}^{n}\left|\frac{f\left(\prod_{j=0}^{k} \tilde{p}_{j} z\right)}{f\left(\prod_{j=0}^{k-1} \tilde{p}_{j} z\right)}\right| \eta_{m}(z) \\
& \leq \sum_{k=1}^{n} \int_{S_{m}(r)} \log ^{+}\left|\frac{f\left(\prod_{j=0}^{k-1} \tilde{p}_{j} z\right)}{f\left(\prod_{j=0}^{k-1} \tilde{p}_{j} z\right)}\right| \eta_{m}(z)=o(T(r, f))
\end{aligned}
$$

on a set of logarithmic density 1 . The proof of Lemma 11 is finished.
Lemma 12. Let f be a meromorphic function on \mathbb{C}^{m} of zero-order such that $f(0) \neq 0, \infty$ and let $p=\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{C}^{m}$ with $p_{j} \neq 0$ for all j. Then we have

$$
T(r, f(p z))=T(r, f(z))+o(T(r, f(z)))
$$

on a set of logarithmic density 1.
Proof. By the First Main Theorem, we have

$$
T\left(r, \frac{f(p z)}{f(z)}\right)=m\left(r, \frac{f(p z)}{f(z)}\right)+N\left(r, \frac{f(p z)}{f(z)}\right)+O(1)
$$

Therefore, by Lemma 11, we get

$$
\begin{equation*}
T(r, f(p z))-T(r, f(z))=N(r, f(p z))-N(r, f(z))+o(T(r, f(z))) \tag{2.2}
\end{equation*}
$$

on a set of logarithmic density 1. Also by the First Main Theorem, we deduce that

$$
\varlimsup_{r \rightarrow \infty} \frac{\log (N(r, f))}{\log r} \leq \varlimsup_{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}=\sigma(f)=0
$$

This, by Lemma 8, we have

$$
\begin{equation*}
N(|p| r, f)=N(r, f)+o(N(r, f) \leq N(r, f)+o(T(r, f)) \tag{2.3}
\end{equation*}
$$

on a set of logarithmic density 1 . Together (2.2) with (2.3), we get

$$
T(r, f(p z)) \leq T(r, f(z))+o(T(r, f(z)))
$$

on a set of logarithmic density 1 . We have the assertion of Lemma 12.
The similar results to Lemmas 10,11 , and 12 can be found in $[1,11,16,17,19]$.
It is known that holomorphic functions f_{0}, \ldots, f_{n} on \mathbb{C}^{m} are linearly dependent over \mathbb{C} if and only if their Wronskian determinants $W\left(f_{0}, \ldots, f_{n}\right)$ vanish identically $[6,13,14]$. Similarly, holomorphic functions f_{0}, \ldots, f_{n} on \mathbb{C}^{m} are linearly dependent over $\mathcal{P}_{c}^{\lambda}$ if and only if their Casorati determinants $C^{c}\left(f_{0}, \ldots, f_{n}\right)$ vanish identically [3], where $\mathcal{P}_{c}^{\lambda}$ is the field of c-periodic meromorphic functions having hyper-order of λ.

Here, we introduce a similar result for the case of p-Casorati determinant by the same method as in [8]. Namely, we have the following.

Lemma 13. Let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a meromorphic mapping with reduce presentation $f=\left(f_{0}: \cdots: f_{n}\right)$ and let $p=\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{C}^{m}$ with $p_{j} \neq 0$ for all j. Assume that $\sigma(f)=0$. Then p-Casorati determinant $C_{p}\left(f_{0}, \ldots, f_{n}\right) \equiv 0$ if and only if the functions f_{0}, \ldots, f_{n} are linear dependent over the field ϕ_{p}^{0}.
Proof. Suppose first that f_{0}, \ldots, f_{n} are linear dependent over the field ϕ_{p}^{0}. Then there exist $\varphi_{0}, \ldots, \varphi_{n} \in \phi_{p}^{0}$ such that $\varphi_{0} f_{0}+\cdots+\varphi_{n} f_{n}=0$ and so

$$
\left\{\begin{array}{l}
\varphi_{0} f_{0}+\cdots+\varphi_{n} f_{n}=0 \tag{2.4}\\
\varphi_{0} \hat{f}_{0}+\cdots+\varphi_{n} \hat{f}_{n}=0 \\
\vdots \\
\varphi_{0} \hat{f}_{0}^{[n]}+\cdots+\varphi_{n} \hat{f}_{n}^{[n]}=0 .
\end{array}\right.
$$

Since (2.4) has a nontrivial solution, we get p-Casorati determinant

$$
C_{p}\left(f_{0}, \ldots, f_{n}\right) \equiv 0
$$

We apply induction on n to prove the converse assertion.
In the case when $n=1$, suppose that $C_{p}\left(f_{0}, f_{1}\right) \equiv 0$. We consider the system of equations

$$
\left\{\begin{array}{l}
\varphi_{0} f_{0}+\varphi_{1} f_{1}=0 \tag{2.5}\\
\varphi_{0} \hat{f}_{0}+\varphi_{1} \hat{f}_{1}=0
\end{array}\right.
$$

Since $C_{p}\left(f_{0}, f_{1}\right) \equiv 0$, it is easy to see that $\varphi_{0}=\frac{f_{1}}{f_{0}}, \varphi_{1}=-1$ is a solution of (2.5). Moreover, by assumption $\sigma(f)=0$, we have $\sigma(\tilde{f})=0$ where $\tilde{f}:=$ $\left(f_{0}: f_{1}\right)$. Then the order of φ_{0} satisfies $\sigma\left(\varphi_{0}\right)=\sigma\left(\frac{f_{1}}{f_{0}}\right) \leq \sigma(\tilde{f}) \leq \sigma(f)=0$. Obviously, $\varphi_{1}=-1 \in \phi_{p}^{0}$ and $\varphi_{0}=\frac{f_{1}}{f_{0}}=\frac{\hat{f}_{1}}{\hat{f}_{0}}$. Therefore, we also have $\varphi_{0} \in \phi_{p}^{0}$. This implies that f_{0}, f_{1} are linearly dependent over ϕ_{p}^{0}.

Suppose now that $C_{p}\left(f_{0}, \ldots, f_{j}\right) \equiv 0$ implies that f_{0}, \ldots, f_{j} are linearly dependent over ϕ_{p}^{0} for all $j \in\{1, \ldots, k-1\}$, where $k \leq n$ and assume that $C_{p}\left(f_{0}, \ldots, f_{k}\right) \equiv 0$. Then the linear system

$$
\left\{\begin{array}{l}
\varphi_{0} f_{0}+\cdots+\varphi_{k-1} f_{k-1}=f_{k} \tag{2.6}\\
\varphi_{0} \hat{f}_{0}+\cdots+\varphi_{k-1} \hat{f}_{k-1}=\hat{f}_{k} \\
\vdots \\
\varphi_{0} \hat{f}_{0}^{[k-1]}+\cdots+\varphi_{k-1} \hat{f}_{k-1}^{[k-1]}=\hat{f}_{k}^{[k-1]} \\
\varphi_{0} \hat{f}_{0}^{[k]}+\cdots+\varphi_{k-1} \hat{f}_{k-1}^{[k]}=\hat{f}_{k}^{[k]}
\end{array}\right.
$$

where we have made the choice $\varphi_{k}=-1$. If $C_{p}\left(f_{0}, \ldots, f_{k-1}\right) \equiv 0$, then f_{0}, \ldots, f_{k-1} are linearly dependent over ϕ_{p}^{0} by the induction assumption. Thus also $f_{0}, \ldots, f_{k-1}, f_{k}$ are linearly dependent over ϕ_{p}^{0}. If $C_{p}\left(f_{0}, \ldots, f_{k-1}\right) \neq 0$, then by Cramer's rule for each $i=0, \ldots, k-1$, we have

$$
\varphi_{i}=\frac{C_{p}\left(f_{0}, \ldots, f_{i-1}, f_{k}, f_{i+1}, \ldots, f_{k-1}\right)}{C_{p}\left(f_{0}, \ldots, f_{k-1}\right)}
$$

where f_{k} occurs in the $i^{t h}$ entry of p-Casorati determinent in the numerator instead of f_{i}. By writing

$$
\varphi_{i}=\frac{f_{i} \hat{f}_{i} \cdots \hat{f}_{i}^{[k-1]} \cdot C_{p}\left(\frac{f_{0}}{f_{i}}, \ldots, \frac{f_{i-1}}{f_{i}}, \frac{f_{k}}{f_{i}}, \frac{f_{i+1}}{f_{i}}, \ldots, \frac{f_{k-1}}{f_{i}}\right)}{f_{k} \hat{f}_{k} \cdots \hat{f}_{k}^{[k-1]} \cdot C_{p}\left(\frac{f_{0}}{f_{k}}, \ldots, \frac{f_{k-1}}{f_{k}}\right)}
$$

it can be seen that

$$
T\left(r, \varphi_{i}\right)=O\left(\sum_{j=0}^{k} \sum_{l=0}^{k-1}\left(T\left(r, \frac{\hat{f}_{j}^{[l]}}{\hat{f}_{i}^{[l]}}\right)+T\left(r, \frac{\hat{f}_{j}^{[l]}}{\hat{f}_{k}^{[l]}}\right)\right)\right)
$$

for all $i=0, \ldots, k-1$. Now by Lemma 12, we have $T(r, \hat{f})=T(r, f)+$ $o(T(r, f))$ for all meromorphic mappings $f(z)$ with $\sigma(f)=0$, and it follows that $\sigma\left(\varphi_{i}\right)=0$ for all $i=0, \ldots, k-1$.

We still need to prove that φ_{i} satisfies $\varphi_{i}(p z)=\varphi_{i}(z)$ for all $i=0, \ldots, k-1$. By applying the operator $\hat{\Delta}_{p}$ to k equations in the system (2.6), where $\hat{\Delta}_{p} f=$ $\hat{f}-f$, it follows that
(2.7)
$\left\{\begin{array}{l}\left(\varphi_{0} \hat{\Delta}_{p} f_{0}+\cdots+\varphi_{k-1} \hat{\Delta}_{p} f_{k-1}\right)+\left(\hat{f}_{0} \hat{\Delta}_{p} \varphi_{0}+\cdots+\hat{f}_{k-1} \hat{\Delta}_{p} \varphi_{k-1}\right)=\hat{\Delta}_{p} f_{k} \\ \left(\varphi_{0} \hat{\Delta}_{p} \hat{f}_{0}+\cdots+\varphi_{k-1} \hat{\Delta}_{p} \hat{f}_{k-1}\right)+\left(\hat{\hat{f}}_{0} \hat{\Delta}_{p} \varphi_{0}+\cdots+\hat{f}_{k-1} \hat{\Delta}_{p} \varphi_{k-1}\right)=\hat{\Delta}_{p} \hat{f}_{k} \\ \vdots \\ \left(\varphi_{0} \hat{\Delta}_{p} \hat{f}_{0}^{[k-1]}+\cdots+\varphi_{k-1} \hat{\Delta}_{p} \hat{f}_{k-1}^{[k-1]}\right)+\left(\hat{f}_{0}^{[k]} \hat{\Delta}_{p} \varphi_{0}+\cdots+\hat{f}_{k-1}^{[k]} \hat{\Delta}_{p} \varphi_{k-1}\right)=\hat{\Delta}_{p} \hat{f}_{k}^{[k-1]} .\end{array}\right.$
On the other hand also from (2.6), we have

$$
\left\{\begin{array}{l}
\varphi_{0} \hat{\Delta}_{p} f_{0}+\cdots+\varphi_{k-1} \hat{\Delta}_{p} f_{k-1}=\hat{\Delta}_{p} f_{k} \tag{2.8}\\
\varphi_{0} \hat{\Delta}_{p} \hat{f}_{0}+\cdots+\varphi_{k-1} \hat{\Delta}_{p} \hat{f}_{k-1}=\hat{\Delta}_{p} \hat{f}_{k} \\
\vdots \\
\varphi_{0} \hat{\Delta}_{p} \hat{f}_{0}^{[k-1]}+\cdots+\varphi_{k-1} \hat{\Delta}_{p} \hat{f}_{k-1}^{[k-1]}=\hat{\Delta}_{p} \hat{f}_{k}^{[k-1]}
\end{array}\right.
$$

Together (2.7) with (2.8), we get

$$
\left\{\begin{array}{l}
\hat{f}_{0} \hat{\Delta}_{p} \varphi_{0}+\cdots+\hat{f}_{k-1} \hat{\Delta}_{p} \varphi_{k-1}=0 \\
\hat{\hat{f}}_{0} \hat{\Delta}_{p} \varphi_{0}+\cdots+\hat{\hat{f}}_{k-1} \hat{\Delta}_{p} \varphi_{k-1}=0 \\
\vdots \\
\hat{f}_{0}^{[k]} \hat{\Delta}_{p} \varphi_{0}+\cdots+\hat{f}_{k-1}^{[k]} \hat{\Delta}_{p} \varphi_{k-1}=0
\end{array}\right.
$$

which has only trivial solution. Therefore, $\hat{\Delta}_{p} \varphi_{0} \equiv \cdots \equiv \hat{\Delta}_{p} \varphi_{k-1} \equiv 0$. It follows that $\varphi_{i}(p z)=\varphi_{i}(z)$ for all $i=0, \ldots, k-1$. We finish the proof of Lemma 13.

3. The proof of Theorem 1

We recall the lemma due to Nochka (see $[5,6,13,14]$) as follows.
Lemma 14. Let $H_{1}, \ldots, H_{q}(q>2 N-n+1)$ be hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$ located in N-subgeneral position. Then there exist a function $\omega:\{1, \ldots, q\} \rightarrow(0,1]$ called a Nochka weight and a real number $\tilde{\omega} \geq 1$ called a Nochka constant satisfying the following conditions:
(i) If $j \in\{1, \ldots, q\}$, then $0<\omega(j) \tilde{\omega} \leq 1$.
(ii) $q-2 N+n-1=\tilde{\omega}\left(\sum_{j=1}^{q} \omega(j)-n-1\right)$.
(iii) For $R \subset\{1, \ldots, q\}$ with $|R|=N+1$, then $\sum_{i \in R} \omega(i) \leq n+1$.
(iv) $\frac{N}{n} \leq \tilde{\omega} \leq \frac{2 N-n+1}{n+1}$.
(v) Given real numbers $\lambda_{1}, \ldots, \lambda_{q}$ with $\lambda_{j} \geq 1$ for $1 \leq j \leq q$ and given any $R \subset\{1, \ldots, q\}$ and $|R|=N+1$, there exists a subset $R^{1} \subset R$ such that $\left|R^{1}\right|=\operatorname{rank}\left\{H_{i}\right\}_{i \in R^{1}}=n+1$ and

$$
\prod_{j \in R} \lambda_{j}^{\omega(j)} \leq \prod_{i \in R^{1}} \lambda_{i} .
$$

Lemma 15. Let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be an linearly nondegenerate meromorphic mapping over ϕ_{p}^{0}, and $H_{j}, j \in Q=\{1, \ldots, q\}$ are hyperplanes, located in N subgeneral position in $\mathbb{P}^{n}(\mathbb{C})$. Let $\omega(j)$ be the Nochka weights of $\left\{H_{j}\right\}_{j \in Q}$. Assume that $q>2 N-n+1$. Then we get

$$
\begin{aligned}
& \|f\|^{\sum_{j \in S} \omega(j)} \cdot \prod_{t_{j} \in R}\left\|\hat{f}^{[j]}\right\|^{\omega\left(t_{j}\right)} \cdot \prod_{j=0}^{n}\left\|\hat{f}^{[j]}\right\|^{-1} \\
\leq & K \cdot \frac{\Pi_{t_{j} \in R}\left|H_{j}\left(\hat{f}^{[j]}\right)\right|^{\omega\left(t_{j}\right)} \cdot \Pi_{j \in S}\left|H_{j}(f)\right|^{\omega(j)}}{\left|C_{p}(f)\right|} \frac{\left|C_{p}\left(H_{j}(f): j \in R^{0}\right)\right|}{\Pi_{t_{j} \in R^{0}}\left|\left(H_{t_{j}}(\hat{f}[j])\right)\right|}
\end{aligned}
$$

for an arbitrarily $z \in \mathbb{C}^{m} \backslash\left(\left\{z \in \mathbb{C}^{m}: \Pi_{t_{j} \in R} H_{j}\left(\hat{f}^{[j]}\right) \cdot \Pi_{j \in S} H_{j}(f)=0\right\} \cup I(f)\right)$, where $I(f)=\left\{z \in \mathbb{C}^{m}: f_{0}(z)=\cdots=f_{n}(z)=0\right\}$ and K depends on $\left\{H_{j}\right\}_{j \in Q}$, and R^{0}, R, S are some subsets of Q such that

$$
R^{0}=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\} \subset R=\left\{t_{0}, t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{N}\right\} \subset Q \backslash S
$$

Proof. Since the hyperplanes $\left\{H_{j}\right\}_{j=1}^{q}$ are in N-subgeneral position of $\mathbb{P}^{n}(\mathbb{C})$, we have $\cap_{j \in R} H_{j}=\emptyset$ for any $R \subset Q$ with $|R|=N+1$. This implies that there exists a subset $S \subset Q$ with $|S|=q-N-1$ such that $\Pi_{j \in S} H_{j}(\omega) \neq 0$.

For each $j \in S$, we consider function $h_{j}(\omega)=\frac{\left|H_{j}(\omega)\right|}{||\omega||}$ with $\omega \in \mathbb{P}^{n}(\mathbb{C})$. It is a positive continuous function on $\mathbb{P}^{n}(\mathbb{C})$. By the compactness of $\mathbb{P}^{n}(\mathbb{C})$, there exists a positive constant K_{j} such that $\frac{1}{K_{j}} \leq h_{j}(\omega) \leq K_{j}$. Therefore, we have

$$
\begin{equation*}
\frac{1}{K_{j}} \leq \frac{\left|H_{j}\left(\hat{f}^{\left[k_{j}\right]}\right)\right|}{\left\|\hat{f}^{\left[k_{j}\right]}\right\|} \leq K_{j} \tag{3.9}
\end{equation*}
$$

for each $j \in S, k_{j} \in \mathbb{N}^{*}$. It is easy to see that for each $j \in Q \backslash S$ and $k_{j} \in \mathbb{N}^{*}$, there exists a positive constant K_{j} such that

$$
\frac{\left|H_{j}\left(\hat{f}^{\left[k_{j}\right]}\right)\right|}{\left\|\hat{f}^{\left[k_{j}\right]}\right\|} \leq K_{j} .
$$

Put $R=Q \backslash S$. Then $|R|=N+1$. Choose $R^{0} \subset R$ such that $\left|R^{0}\right|=n+1$ and R^{0} satisfies Lemma $14(\mathrm{v})$ with respect to numbers $\frac{\left\|\hat{f}^{\left(k_{j}\right]}\right\| K_{j}}{\left|H_{j}\left(\hat{f}^{\left[k_{j}\right]}\right)\right|}$ for arbitrary fixed point $z \in \mathbb{C}^{m} \backslash\left(\left\{z \in \mathbb{C}^{m}: \Pi_{j \in Q}\left|H_{j}\left(\hat{f}^{\left[k_{j}\right]}\right)\right|=0\right\} \cup I(f)\right)$ and $k_{j} \in \mathbb{N}$. We may assume that

$$
R=\left\{t_{0}, t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{N}\right\} \text { and } R^{0}=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}
$$

For Q, we can rewrite its elements as follows.

$$
Q=\left\{t_{0}, t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{N}, t_{N+1}, \ldots, t_{q-1}\right\} .
$$

Then

$$
\begin{equation*}
\prod_{t_{j} \in R}\left(\frac{\| \hat{f}^{[j]}| | K_{t_{j}}}{\left|H_{t_{j}}\left(\hat{f}^{[j]}\right)\right|}\right)^{\omega\left(t_{j}\right)} \leq \prod_{t_{j} \in R^{0}} \frac{\| \hat{f}^{[j]}| | K_{t_{j}}}{\left|H_{t_{j}}\left(\hat{f}^{[j]}\right)\right|} \tag{3.10}
\end{equation*}
$$

Since f is linearly nondegenerate over field ϕ_{p}^{0}, it follows from Lemma 13 that the Casorati determinant $C_{p}(f) \not \equiv 0$. By rank $\left\{H_{t_{j}}\right\}_{j \in R^{0}}=n+1$, there exists a positive constant $K_{R^{0}}$ such that $\left|C_{p}(f)\right|=K_{R^{0}} \cdot\left|C_{p}\left(H_{j}(f): j \in R^{0}\right)\right|$. Thus

$$
\begin{equation*}
\frac{K_{R^{0}} \cdot\left|C_{p}\left(H_{j}(f): j \in R^{0}\right)\right|}{\left|C^{d}(f)\right|}=1 . \tag{3.11}
\end{equation*}
$$

Since (3.9) and (3.10), for an arbitrarily

$$
z \in G:=\mathbb{C}^{m} \backslash\left(\left\{z \in \mathbb{C}^{m}: \Pi_{t_{j} \in R} H_{j}\left(\hat{f}^{[j]}\right) \cdot \Pi_{j \in S} H_{j}(f)=0\right\} \cup I(f)\right)
$$

we have

$$
\begin{align*}
& \prod_{j \in S}\left(\frac{1}{K_{j}^{2}}\right)^{\omega(j)} \tag{3.12}\\
\leq & \prod_{j \in S}\left(\frac{\left|H_{j}(f)\right|}{\|f\| K_{j}}\right)^{\omega(j)} \\
\leq & \prod_{t_{j} \in R}\left(\frac{\| \hat{f}^{[j]}| | K_{t_{j}}}{\left|H_{t_{j}}\left(\hat{f}^{[j]}\right)\right|}\right)^{\omega\left(t_{j}\right)} \cdot \frac{\prod_{t_{j} \in R}\left|H_{t_{j}}\left(\hat{f}^{[j]}\right)\right|^{\omega\left(t_{j}\right)} \prod_{j \in S}\left|H_{j}(f)\right|^{\omega(j)}}{\left\|\left.f\right|^{\sum_{j \in S} \omega(j)} \cdot \prod_{t_{j} \in R}\right\| \hat{f}^{[j]} \|^{\omega\left(t_{j}\right)} \cdot K_{0}^{\sum_{j=1}^{q} \omega(j)}} \\
\leq & \prod_{t_{j} \in R^{0}} \frac{\| \hat{f}^{[j]}| | K_{t_{j}}}{\left|H_{t_{j}}\left(\hat{f}^{[j]}\right)\right|} \cdot \frac{\prod_{t_{j} \in R}\left|H_{t_{j}}\left(\hat{f}^{[j]}\right)\right|^{\omega\left(t_{j}\right)} \prod_{j \in S}\left|H_{j}(f)\right|^{\omega(j)}}{\|f\|^{\Sigma_{j \in S} \omega(j)} \cdot \prod_{t_{j} \in R}\left\|\hat{f}^{[j]}\right\|^{\omega\left(t_{j}\right)} \cdot K_{0}^{\sum_{j=1}^{q} \omega(j)}}
\end{align*}
$$

$$
\begin{aligned}
= & \frac{\prod_{t_{j} \in R^{0}} K_{t_{j}}}{K_{0}^{\sum_{j=1}^{j} \omega(j)} \cdot \frac{\prod_{t_{j} \in R}\left|H_{t_{j}}(\hat{f}[j])\right|^{\left[\left(t_{j}\right)\right.} \prod_{j \in S}\left|H_{j}(f)\right|^{\omega(j)}}{\left|H_{t_{0}}(f) \cdot H_{t_{1}}(\hat{f}) \cdots H_{t_{n}}(\hat{f}[n])\right|}} \begin{aligned}
& 1 \\
& \times \frac{1}{\|f\|^{\sum_{j \in S} \omega(j)} \cdot \prod_{t_{j} \in R}\left\|\hat{f}^{[j]}\right\|}\left\|^{\omega\left(t_{j}\right)} \cdot \prod_{t_{j} \in R^{0}}\right\| \hat{f}^{[j]} \|^{-1}
\end{aligned},
\end{aligned}
$$

where $K_{0}:=\min \left\{K_{1}, \ldots, K_{q}\right\}$. Together (3.11) with (3.12), for $z \in G$, we have

$$
\begin{aligned}
& \prod_{j \in S}\left(\frac{1}{K_{j}^{2}}\right)^{\omega(j)} \\
\leq & \frac{\prod_{t_{j} \in R^{0}} K_{t_{j}} \cdot K_{R^{0}}}{K_{0}^{\sum_{j=1}^{q} \omega(j)}} \cdot \frac{1}{\|f\|^{\sum_{j \in S} \omega(j)} \cdot \prod_{t_{j} \in R}| | \hat{\hat{f}^{[j]} \mid}| |^{\omega\left(t_{j}\right)} \cdot \prod_{t_{j} \in R^{0}}| | \hat{f}^{[j]}\| \|^{-1}} \\
& \times \frac{\prod_{t_{j} \in R} \mid H_{t_{j}}\left(\left.\hat{\left.f^{[j]}\right)}\right|^{\omega\left(t_{j}\right)} \prod_{j \in S}\left|H_{j}(f)\right|^{\omega(j)}\right.}{\left|C_{p}(f)\right|} \cdot \frac{\left|C_{p}\left(H_{j}(f): j \in R^{0}\right)\right|}{\left|H_{t_{0}}(f) \cdot H_{t_{1}}(\hat{f}) \cdots H_{t_{n}}\left(\hat{f}{ }^{[n]}\right)\right|} .
\end{aligned}
$$

It implies that

$$
\begin{aligned}
& \|f\|^{\sum_{j \in s} \omega(j)} \cdot \prod_{t_{j} \in R}\left\|\hat{f}^{[j]}\right\|\left\|^{\omega\left(t_{j}\right)} \cdot \prod_{j=0}^{n}\right\| \hat{f}^{[j]} \|^{-1} \\
\leq & \frac{\prod_{t_{j} \in R^{0}} K_{t_{j}} \cdot K_{R^{0}} \cdot \Pi_{j \in S}\left(K_{j}\right)^{2 \omega(j)}}{K_{0}^{\sum_{j=1}^{q} \omega(j)}} \cdot \frac{\prod_{t_{j} \in R}\left|H_{t_{j}}\left(\hat{f}^{[j]}\right)\right|^{\omega\left(t_{j}\right)} \prod_{j \in S}\left|H_{j}(f)\right|^{\omega(j)}}{\left|C_{p}(f)\right|} \\
& \times \frac{\left|C_{p}\left(H_{j}(f): j \in R^{0}\right)\right|}{\left|H_{t_{0}}(f) \cdot H_{t_{1}}(\hat{f}) \cdots H_{t_{n}}(\hat{f}[n])\right|}
\end{aligned}
$$

for an arbitrarily $z \in G$. We obtain Lemma 15 by setting

$$
K=\frac{\prod_{t_{j} \in R^{0}} K_{t_{j}} \cdot K_{R^{0}} \cdot \Pi_{j \in S}\left(K_{j}\right)^{2 \omega(j)}}{K_{0}^{\sum_{j=1}^{g} \omega(j)}}
$$

which is a positive constant depending on $\left\{H_{j}\right\}_{j=1}^{q}, R^{0}, R$ and S. We finish the proof of Lemma 15.

Proof of Theorem 1. By Lemma 15, for $r>1$, we have

$$
\begin{aligned}
& \sum_{j \in S} \omega(j) \log \|f\|+\sum_{t_{j} \in R} \omega\left(t_{j}\right) \log \left\|\hat{f}^{[j]}\right\|-\sum_{j=0}^{n} \log \left\|\hat{f} \hat{f}^{[j]}\right\| \\
\leq & \sum_{t_{j} \in R} \omega\left(t_{j}\right) \log \left|H_{t_{j}}\left(\hat{f^{[j]}}\right)\right|+\sum_{j \in S} \omega(j) \log \left|H_{j}(f)\right|-\log \left|C_{p}(f)\right| \\
& +\log \frac{\left|C_{p}\left(H_{j}(f): j \in R^{0}\right)\right|}{\Pi_{t_{j} \in R^{\circ}\left|\left(H_{t_{j}}(\hat{f}[j])\right)\right|}+O(1) .}
\end{aligned}
$$

Integrating both sides of this inequality and using Jensen's theorem and by definition of the characteristic function of f, we have

$$
\begin{align*}
& \sum_{j \in S} \omega(j) T_{f}(r)+\sum_{t_{j} \in R} \omega\left(t_{j}\right) T_{\hat{f}[j]}(r)-\sum_{j=0}^{n} T_{\hat{f}[j]}(r) \tag{3.13}\\
\leq & \sum_{t_{j} \in R} \omega\left(t_{j}\right) N\left(r, \nu_{H_{t_{j}}(\hat{f}[j]}^{0}\right)+\sum_{j \in S} \omega(j) N\left(r, \nu_{H_{j}(f)}^{0}\right)-N\left(r, \nu_{\left.C_{p}(f)\right)}^{0}\right) \\
& +\int_{S_{m}(r)} \log ^{+}+\frac{\left|C_{p}\left(H_{j}(f): j \in R^{0}\right)\right|}{\Pi_{t_{j} \in R^{0}}\left|\left(H_{t_{j}}(\hat{f}[j])\right)\right|} \eta_{m}(z)+O(1) \\
\leq & \sum_{t_{j} \in R} \omega\left(t_{j}\right) N\left(|p| r, \nu_{H_{t_{j}}(f)}^{0}\right)+\sum_{j \in S} \omega(j) N\left(r, \nu_{Q_{j}(f)}^{0}\right)-N\left(r, \nu_{\left.C^{d}(f)\right)}^{0}\right) \\
& +\int_{S_{m}(r)} \log ^{+} \frac{\left|C_{p}\left(H_{j}(f): j \in R^{0}\right)\right|}{\Pi_{t_{j} \in R^{0}}\left|\left(H_{t_{j}}\left(\hat{f}^{[j]}\right)\right)\right|} \eta_{m}(z)+O(1) .
\end{align*}
$$

By the First Main Theorem, the order of $N\left(r, \nu_{H_{j}(f)}^{0}\right)$ satisfies

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{+} N\left(r, \nu_{H_{t_{j}}(f)}^{0}\right)}{\log r} \leq \limsup _{r \rightarrow \infty} \frac{\log ^{+} T(r, f)}{\log r}=\sigma(f)=0 .
$$

So, by Lemma 8 , the below inequality holds on a set of logarithmic density 1

$$
\begin{aligned}
N\left(|p| r, \nu_{H_{t_{j}}(f)}^{0}\right) & =N\left(r, \nu_{H_{t_{j}}(f)}^{0}\right)+o\left(N\left(r, \nu_{H_{t_{j}}(f)}^{0}\right)\right) \\
& \leq N\left(r, \nu_{H_{t_{j}}(f)}^{0}\right)+o(T(r, f)) .
\end{aligned}
$$

It follows from (3.13) that

$$
\begin{align*}
& \sum_{j \in S} \omega(j) T_{f}(r)+\sum_{t_{j} \in R} \omega\left(t_{j}\right) T_{\hat{f}[j]}(r)-\sum_{j=0}^{n} T_{\hat{f}[j]}(r) \tag{3.14}\\
\leq & \sum_{t_{j} \in R} \omega\left(t_{j}\right) N\left(r, \nu_{H_{t_{j}}(f)}^{0}\right)+\sum_{j \in S} \omega(j) N\left(r, \nu_{H_{j}(f)}^{0}\right)-N\left(r, \nu_{\left.C_{p}(f)\right)}^{0}\right) \\
& +\int_{S_{m}(r)} \log ^{+}+\frac{\left|C_{p}\left(H_{j}(f): j \in R^{0}\right)\right|}{\Pi_{t_{j} \in R^{0}}\left|\left(H_{t_{j}}(\hat{f}[j])\right)\right|} \eta_{m}(z)+o(T(r, f)) \\
= & \sum_{j \in Q} \omega(j) N\left(r, \nu_{H_{j}(f)}^{0}\right)-N\left(r, \nu_{\left.\left.C_{p}(f)\right)\right)}^{0}\right) \\
& +\int_{S_{m}(r)} \log ^{+} \frac{\left|C_{p}\left(H_{j}(f): j \in R^{0}\right)\right|}{\Pi_{t_{j} \in R^{0}}\left|\left(H_{t_{j}}(\hat{f}[j])\right)\right|} \eta_{m}(z)+o(T(r, f)) .
\end{align*}
$$

We have

$$
\begin{aligned}
& \frac{C_{p}\left(H_{j}(f): j \in R^{0}\right)}{\Pi_{t_{j} \in R^{0}}\left|\left(Q_{t_{j}}(\hat{f}[j])\right)\right|}=\frac{\left|\begin{array}{cccc}
1 & \frac{H_{t_{1}}(f)}{H_{t_{0}}(f)} & \cdots & \frac{H_{t_{n}}(f)}{H_{t_{0}}(f)} \\
1 & \frac{H_{t_{1}}(\hat{f})}{H_{t_{0}}(\hat{f})} & \cdots & \frac{H_{t_{n}}(\hat{f})}{H_{t_{0}}(\hat{f})} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \left.\frac{H_{t_{1}}\left(\hat{f}^{[n]}\right)}{H_{t_{0}}(\hat{f}}\right) & \cdots & \frac{H_{t_{n}}\left(\hat{f}^{[n]}\right)}{H_{t_{0}}(\hat{f}[n])}
\end{array}\right|}{\left|\frac{H_{t_{1}}(\hat{f})}{H_{t_{0}}(\hat{f})} \cdots \frac{H_{t_{n}}(\hat{f})}{H_{t_{0}}(\hat{f}[n])}\right|}
\end{aligned}
$$

It is easy to see that $\sigma\left(\frac{H_{i}(f)}{H_{j}(f)}\right) \leq \sigma(f)=0$ for all i, j. Therefore, by Lemma 11, we have

$$
\begin{aligned}
\int_{S_{m}(r)} \log ^{+}+\frac{\left|C_{p}\left(H_{j}(f): j \in R^{0}\right)\right|}{\Pi_{t_{j} \in R^{0}}\left|\left(H_{t_{j}}\left(\hat{f}^{[j]}\right)\right)\right|} \eta_{m}(z) & \leq \sum_{j=1}^{n} o\left(T\left(r, \frac{H_{t_{j}}\left(\hat{f}^{[j]}\right)}{H_{t_{0}}\left(\hat{f}^{[j]}\right)}\right)\right) \\
& =o(T(r, f))
\end{aligned}
$$

on a set of logarithmic density 1 . Hence, together this with (3.14), we get

$$
\begin{align*}
& \sum_{j \in S} \omega(j) T_{f}(r)+\sum_{t_{j} \in R} \omega\left(t_{j}\right) T_{\hat{f}[j]}(r)-\sum_{j=0}^{n} T_{\hat{f}[j]}(r) \tag{3.15}\\
\leq & \sum_{j \in Q} \omega(j) N\left(r, \nu_{H_{j}(f)}^{0}\right)-N\left(r, \nu_{\left.C_{p}(f)\right)}^{0}\right)+o(T(r, f))
\end{align*}
$$

on a set of logarithmic density 1. From (3.15) and Lemma 12, we get (3.16)

$$
\left(\sum_{j \in Q} \omega(j)-n-1\right) T(r, f) \leq \sum_{j \in Q} \omega(j) N\left(r, \nu_{H_{j}(f)}^{0}\right)-N\left(r, \nu_{\left.C_{p}(f)\right)}^{0}\right)+o(T(r, f))
$$

on a set of logarithmic density 1 .
By (i), (ii) and (iv) of Lemma 14, the inequality (3.16) implies that the below inequality holds on a set of logarithmic density 1

$$
(q-2 N+n-1) T(r, f) \leq \sum_{j \in Q} N\left(r, \nu_{H_{j}(f)}^{0}\right)-\frac{N}{n} N\left(r, \nu_{\left.C_{p}(f)\right)}^{0}\right)+o(T(r, f))
$$

The proof of Theorem 1 is completed.

4. The proof of Theorem 2

Let z_{0} be a n-successive zero with separation p of $H_{j}(f)$ respect to the rescaling $\tau_{p}(z)=p z$ for some $j \in\{1, \ldots, q\}$. Since $\left\{H_{j}\right\}_{j=1}^{q}$ is in N-subgeneral position, there are at most N functions $H_{j}(f)$ vanishing at z_{0}. Without loss of generality, we may assume that z_{0} is a n-successive with separation p zero of $H_{j}(f)$ respect to the rescaling $\tau_{p}(z)=p z$ with all $j \in A$ and z_{0} is a n-aperiodic zero with separation p of $H_{j}(f)$ respect to the rescaling $\tau_{p}(z)=p z$ with all $j \in B$ and z_{0} is not a zero of $H_{j}(f)$ with all $j \notin A \cup B$, where $|A \cup B|=N$. Take $R \subset\{1, \ldots, q\}$ containing A such that $|R|=N+1$ and $R \cap B=\emptyset$. Choose subset $R^{1} \subset R$ with $\left|R^{1}\right|=\operatorname{rank}\left\{H_{j}\right\}_{j \in R^{1}}=n+1$ such that R^{1} satisfies (v) of Lemma 14 with respect to numbers $\left\{\lambda_{j}=e^{\nu_{H_{j}(f)}^{0}\left(z_{0}\right)}\right\}_{j=1}^{q}$. Then we have

$$
\prod_{j \in R} e^{\omega(j) \nu_{H_{j}(f)}^{0}\left(z_{0}\right)} \leq \prod_{j \in R^{1}} e^{\nu_{H_{j}(f)}^{0}\left(z_{0}\right)} .
$$

Therefore,

$$
\begin{equation*}
\sum_{j \notin B} \omega(j) \nu_{H_{j}(f)}^{0}\left(z_{0}\right) \leq \sum_{j \in A \cap R^{1}} \nu_{H_{j}(f)}^{0}\left(z_{0}\right) . \tag{4.17}
\end{equation*}
$$

By rearrangement index if necessary, we may assume that $R^{1}=\left\{t_{0}, \ldots, t_{n}\right\}$ and $A \cap R^{1}=\left\{t_{0}, \ldots, t_{k}\right\}$ with $0 \leq k \leq n$. Since $\operatorname{rank}\left\{H_{t_{j}}\right\}_{j=0}^{n}=n+1$, there exists a nonzero constant $C_{R^{1}}$ such that

$$
C_{p}(f)=C_{R^{1}} \cdot C_{p}\left(H_{t_{0}}(f), \ldots, H_{t_{n}}(f)\right) .
$$

This deduces that $\nu_{C_{p}(f)}^{0}=\nu_{C_{p}\left(H_{t_{0}}(f), \ldots, H_{t_{n}}(f)\right)}^{0}$. We have

$$
\begin{aligned}
& C_{p}\left(H_{t_{0}}(f), \ldots, H_{t_{n}}(f)\right) \\
= & H_{t_{0}}(f) \cdots H_{t_{k}}(f) \\
& \times\left|\begin{array}{cccccc}
1 & \cdots & 1 & H_{t_{k+1}}(f) & \cdots & H_{t_{n}}(f) \\
\frac{H_{t_{0}}(\hat{f})}{H_{t_{0}}(f)} & \cdots & \frac{H_{t_{k}}(\hat{f})}{H_{t_{k}}(f)} & H_{t_{k+1}}(\hat{f}) & \cdots & H_{t_{n}}(\hat{f}) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\frac{H_{t_{0}}(\hat{f}(n])}{H_{t_{0}}(f)} & \cdots & \frac{H_{t_{k}}(\hat{f}(n])}{H_{t_{n}}(f)} & H_{t_{k+1}}\left(\hat{f}^{[n]}\right) & \cdots & H_{t_{n}}\left(\hat{f}^{[n]}\right)
\end{array}\right| .
\end{aligned}
$$

It follows that

$$
\nu_{C_{p}(f)}^{0}\left(z_{0}\right) \geq \nu_{H_{t_{0}}(f) \cdots H_{t_{k}}(f)}^{0}\left(z_{0}\right)=\sum_{j=0}^{k} \nu_{H_{t_{j}}(f)}^{0}\left(z_{0}\right) .
$$

Together this inequality with (4.17), we get

$$
\nu_{C_{p}(f)}^{0}\left(z_{0}\right) \geq \sum_{j \notin B} \omega(j) \nu_{H_{j}(f)}^{0}\left(z_{0}\right) .
$$

This, by going through all points $z_{0} \in \mathbb{C}^{m}$ and by definitions of $\hat{N}^{[n, p]}\left(r, H_{j}(f)\right)$ implies that

$$
\sum_{j=1}^{q} \omega(j) N\left(r, \nu_{H_{j}(f)}^{0}\right)-N\left(r, \nu_{C_{p}(f)}^{0}\right) \leq \sum_{j=1}^{q} \omega(j) \hat{N}^{[n, p]}\left(r, H_{j}(f)\right) .
$$

This and (3.16) yield

$$
\left(\sum_{j=1}^{q} \omega(j)-n-1\right) T(r, f) \leq \sum_{j=1}^{q} \omega(j) \hat{N}^{[n, p]}\left(r, H_{j}(f)\right)+o(T(r, f))
$$

on a set of logarithmic density 1. By (i), (ii) and (iv) of Lemma 14, the above inequality implies that

$$
(q-2 N+n-1) T(r, f) \leq \sum_{j=1}^{q} \hat{N}^{[n, p]}\left(r, H_{j}(f)\right)+o(T(r, f))
$$

on a set of logarithmic density 1 . The proof of Theorem 2 is completed.

5. The proof of Theorem 3

Lemma 16. Let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a meromorphic mapping with reduce presentation $f=\left(f_{0}: \cdots: f_{n}\right)$ and let $p=\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{C}^{m}$ with $p_{j} \neq 0,1$ for all j. Assume that $\sigma(f)=0$ and all zeros of f_{0}, \ldots, f_{n} are forward invariant with respect to the rescaling $\tau_{p}(z)=p z$. If $\frac{f_{i}}{f_{j}} \notin \phi_{p}^{0}$ for all $i, j \in\{0, \ldots, n\}$ such that $i \neq j$, then f_{0}, \ldots, f_{n} are linearly independent over the field ϕ_{p}^{0}.

Proof. Assume that f is linearly degenerate over ϕ_{p}^{0}. Without loss generality we assume that there exist $\varphi_{0}, \ldots, \varphi_{n} \in \phi_{p}^{0} \backslash\{0\}$ such that $\varphi_{0} f_{0}+\cdots+\varphi_{n-1} f_{n-1}=$ $\varphi_{n} f_{n}$. Since all zeros of f_{0}, \ldots, f_{n} are forward invariant with respect to the rescaling $\tau_{p}(z)=p z$ and since $\varphi_{0}, \ldots, \varphi_{n} \in \phi_{p}^{0} \backslash\{0\}$, we can choose a meromorphic h such that $h \varphi_{0} f_{0}, \ldots, h \varphi_{n} f_{n}$ are holomorphic functions on \mathbb{C}^{m} without common zeros and such that preimages of all zeros of $h \varphi_{0} f_{0}, \ldots, h \varphi_{n} f_{n}$ are forward invariant with respect to the rescaling $\tau_{p}(z)=p z$. Then we get

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{\log ^{+}\left(N\left(r, \nu_{h}^{0}\right)+N\left(r, \nu_{h}^{\infty}\right)\right)}{\log r}=0 \tag{5.18}
\end{equation*}
$$

and $h \varphi_{0} f_{0}, \ldots, h \varphi_{n-1} f_{n-1}$ can not have any common zeros.
Put $g_{i}=h \varphi_{i} f_{i}$ for $0 \leq i \leq n$ and $G=\left(g_{0}: \cdots: g_{n-1}\right)$ is a holomorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n-1}(\mathbb{C})$. Then by definition of characteristic function, we have

$$
T(r, G)=\int_{S_{m}(r)} \log \|G\| \eta_{m}(z)+O(1)
$$

$$
\begin{aligned}
\leq & \int_{S_{m}(r)} \log |h| \eta_{m}(z)+\int_{S_{m}(r)} \log \left(\sum_{j=0}^{n-1}\left|f_{j}\right|^{2}\right)^{\frac{1}{2}} \eta_{m}(z) \\
& +\sum_{j=0}^{n-1} \int_{S_{m}(r)} \log \left|\varphi_{j}\right| \eta_{m}(z)+O(1) \\
\leq & N\left(r, \nu_{h}^{0}\right)+N\left(r, \nu_{h}^{\infty}\right)+T_{f}(r)+\sum_{j=0}^{n-1} T_{\varphi_{j}}(r)+O(1)
\end{aligned}
$$

This together (5.18) deduce that $\sigma(G)=0$.
Assume that $G: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ is linearly nondegenerate over ϕ_{p}^{0}. Since Lemma 13, it follows that $C_{p}\left(g_{0}, \ldots, g_{n-1}\right) \not \equiv 0$. Take $n+1$ hyperplanes

$$
H_{0}: \omega_{0}=0, H_{1}: \omega_{1}=0, \ldots, H_{n-1}: \omega_{n-1}=0
$$

and

$$
H_{n}: \omega_{0}+\cdots+\omega_{n-1}=0
$$

where $\left(\omega_{0}, \ldots, \omega_{n-1}\right)$ is homogeneous coordinate system of $\mathbb{P}^{n-1}(\mathbb{C})$. So $\left(G, H_{j}\right)=g_{j}$ for $0 \leq j \leq n-1$ and $\left(G, H_{n}\right)=g_{0}+\cdots+g_{n-1}=h \varphi_{n} f_{n}=g_{n}$. Obviously, $\left\{H_{j}\right\}_{j=0}^{n}$ are in general position in $P^{n-1}(\mathbb{C})$. Applying Theorem 2, we have

$$
T(r, G) \leq \sum_{j=0}^{n} \hat{N}^{[n, p]}\left(r, H_{j}(G)\right)+o(T(r, G))
$$

on a set of logarithmic density 1. Since all zeros of $H_{j}(G)=\left(G, H_{j}\right)=$ $g_{j}(0 \leq j \leq n)$ are forward invariant with respect to the rescaling $\tau_{p}(z)=p z$, $\hat{N}^{[n, p]}\left(r, H_{j}(G)\right) \equiv 0$ and therefore, $T(r, G) \leq o(T(r, G))$ on a set of logarithmic density 1 . This is a contradiction. It follows that G is linearly dependent over ϕ_{p}^{0}. Thus there exist $\psi_{0}, \ldots, \psi_{n-1}$ satisfying

$$
\psi_{0} f_{0}+\cdots+\psi_{n-2} f_{n-2}=\psi_{n-1} f_{n-1}
$$

and not all ψ_{i} are identically zero. By continuing in this fashion it follows after at most $n-2$ time, we have $\frac{f_{i}}{f_{j}} \in \phi_{p}^{0}$ for some $i \neq j$. This is contradiction. Hence, f is linearly nondegenerate over ϕ_{p}^{0}. We finish the proof of Lemma 16.

Lemma 17. Let $f=\left(f_{0}: \cdots: f_{n}\right)$ be a meromorphic mapping of \mathbb{C}^{m} to $\mathbb{P}^{n}(\mathbb{C})$ such that $\sigma(f)=0$ and let $p=\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{C}^{m}$ with $p_{j} \neq 0,1$ for all j. Assume that all zeros of f_{0}, \ldots, f_{n} are forward invariant with respect to the rescaling $\tau_{p}(z)=p z$. Let $S_{1} \cup \cdots \cup S_{l}$ be the partion of $\{0, \ldots, n\}$ formed in such a way that i and j are in the same class S_{k} if only if $\frac{f_{i}}{f_{j}} \in \phi_{p}^{0}$. If $f_{0}+\cdots+f_{n}=0$, then $\sum_{j \in S_{k}} f_{j}=0$ for all $k \in\{1, \ldots, l\}$.

Proof. For each $i \in S_{k}, k \in\{1, \ldots, l\}$ we have $f_{i}=\varphi_{i, j_{k}} f_{j_{k}}$ for $\varphi_{i, j_{k}} \in \phi_{p}^{0}$ whenever the $i, j_{k} \in S_{k}$. It implies that

$$
0=\sum_{k=0}^{n} f_{k}=\sum_{k=1}^{l} \sum_{i \in S_{k}} \varphi_{i, j_{k}} f_{j_{k}}=\sum_{k=1}^{l} B_{k} f_{j_{k}}
$$

where $B_{k}=\sum_{i \in S_{k}} \varphi_{i, j_{k}} \in \phi_{p}^{0}$. This deduces that $f_{j_{1}}, \ldots, f_{j_{l}}$ are linearly dependent over ϕ_{p}^{0} if not all B_{k} are identically zeros. This contradicts to Lemma 16. Then $B_{k} \equiv 0$ for all $k \in\{1, \ldots, l\}$. Thus $\sum_{i \in S_{k}} f_{i}=\sum_{i \in S_{k}} \varphi_{i, j_{k}} f_{j_{k}}=B_{k} f_{i_{k}} \equiv 0$ for all $k \in\{1, \ldots, l\}$. Lemma 17 is proved.

Proof of Theorem 3. By assumptions of the theorem, holomorphic functions

$$
G_{j}=H_{j}(f)=\sum_{i=0}^{n} a_{j i} f_{i}
$$

satisfying

$$
\left\{\tau_{p}\left(G_{j}^{-1}(0)\right)\right\} \subset\left\{G_{j}^{-1}(0)\right\}, j \in\{1, \ldots, q\}
$$

where $H_{j}: \sum_{i=0}^{n} a_{j i} \omega_{i}=0$, and $\{\cdot\}$ denotes a multiset with counting multiplicities of its elements. We say that $i \sim j$ if $G_{i}=\alpha G_{j}$ for some $\alpha \in \phi_{p}^{0} \backslash\{0\}$. Therefore, the set of indexes $\{1, \ldots, q\}$ may be split into disjoint equivalence classes S_{j},

$$
\{1, \ldots, q\}=\cup_{j=1}^{l} S_{j}
$$

for some $l \leq q$.
The first, we assume that S_{j} has as most $q-N-1$ elements for some $j \in$ $\{1, \ldots, l\}$. Put $R=Q \backslash S_{j}$ then, $|R| \geq N+1$. Let $s_{0} \in S_{j}$ and put $U=R \cup\left\{s_{0}\right\}$. Without loss of generality, we may assume that $U=\left\{s_{0}, \ldots, s_{N+1}\right\}$. Then since the $\left\{H_{j}\right\}_{j=1}^{q}$ are in N-subgeneral position, there exist $\alpha_{j} \in \mathbb{C} \backslash\{0\}$ such that $\sum_{j=0}^{N+1} \alpha_{j} H_{s_{j}}=0$ and therefore, we have $\sum_{j=0}^{N+1} \alpha_{j} H_{s_{j}}(f)=\sum_{j=0}^{N+1} \alpha_{j} G_{s_{j}} \equiv 0$. By assumptions of the theorem, we can see that all zeros of $\alpha_{j} G_{s_{j}}$ are forward invariant with respect to the rescaling $\tau_{p}(z)=p z$. We have

$$
G:=\left(\alpha_{0} G_{s_{0}}: \cdots: \alpha_{N+1} G_{s_{N+1}}\right)
$$

is a meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{N+1}(\mathbb{C})$ with its order $\sigma(G) \leq \sigma(f)=0$. By Lemma 17, we have $\alpha_{0} G_{s_{0}} \equiv 0$. Hence, $H_{s_{0}}(f) \equiv 0$. This implies that the image $f\left(\mathbb{C}^{m}\right)$ is included in the hyperplane $H_{s_{0}}$ of $\mathbb{P}^{n}(\mathbb{C})$. We may consider f be a meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n-1}(\mathbb{C})$.

The second, we assume that S_{j} has as least $q-N$ elements for all $j \in$ $\{1, \ldots, l\}$. Then

$$
l \leq \frac{q}{q-N}
$$

Since $\left\{H_{j}\right\}_{j=1}^{q}$ is in N-subgeneral position, we can choose a subset $V \subset\{1, \ldots$, $q\}$ with $|V|=n+1$ such that $\left\{H_{j}\right\}_{j \in V}$ is linearly independent. Put $V_{j}=V \cap S_{j}$
for each $1 \leq j \leq l$. Then we have $V=\cup_{j=1}^{l} V_{j}$. Since each V_{j} gives raise to $\left|V_{j}\right|-1$ equations over the field ϕ_{p}^{0}, it is easy to see that there are at least

$$
\sum_{j=1}^{l}\left(\left|V_{j}\right|-1\right)=n+1-l \geq n+1-\frac{q}{q-N}=n-\frac{N}{q-N}
$$

linearly independent relations over the field ϕ_{p}^{0}. It follows that the image of f is contained in a projective linear subspace over ϕ_{p}^{0} of dimension $\leq\left[\frac{N}{q-N}\right]$. Obviously, if $q \geq 2 N+1$, then $\left[\frac{N}{q-N}\right]=0$, and therefore $f(z)=f(p z)$. The Theorem 3 is proved.

References

[1] D. C. Barnett, R. G. Halburd, R. J. Korhonen, and W. Morgan, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A. 137 (2007), no. 3, 457-474.
[2] T. B. Cao, Difference analogues of the second main theorem for meromorphic functions in several complex variables, Math. Nachr. 287 (2014), no. 5-6, 530-545.
[3] T. B. Cao and R. Korhonen, A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables, J. Math. Anal. Appl. 444 (2016), no. 2, 1114-1132.
[4] H. Cartan, Sur lés zeros des combinaisons linéaires de pfonctions holomorphes données, Mathematica Cluj 7 (1933), 531.
[5] H. Fujimoto, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J. 58 (1975), 1-23.
[6] , Nonintegrated defect relation for meromorphic maps of complete Kähler manifolds into $\mathbb{P}^{N_{1}}(\mathbb{C}) \times \cdots \times \mathbb{P}^{N_{k}}(\mathbb{C})$, Japan. J. Math. (N.S.) 11 (1985), no. 2, 233-264.
[7] R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
[8] R. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298.
[9] W. K. Hayman, On the characteristic of functions meromorphic in the plane and of their integrals, Proc. Lond. Math. Soc. (3) 14 (1965), 93-128.
[10] P-C. Hu, P. Li, and C-C. Yang, Unicity of Meromorphic Mappings, Vol. 1 of Advances in Complex Analysis and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.
[11] Z.-B. Huang, Value distribution and uniqueness on q-differences of meromorphic functions, Bull. Korean Math. Soc. 50 (2013), no. 4, 1157-1171.
[12] R. Korhonen, A difference Picard theorem for meromorphic functions of several variables, Comput. Methods Funct. Theory 12 (2012), no. 1, 343-361.
[13] E. I. Nochka, On the theory of meromorphic functions, Sov. Math. Dokl. 27 (1983), 377-381.
[14] J. Noguchi, A note on entire pseudo-holomorphic curves and the proof of CartanNochka's theorem, Kodai Math. J. 28 (2005), no. 2, 336-346.
[15] X. Qi, K. Liu, and L. Yang, Value results of a meromorphic function $f(z)$ and $f(q z)$, Bull. Korean Math. Soc. 48 (2011), no. 6, 1235-1243.
[16] Z. T. Wen, The q-difference theorems for meromorphic functions of several variables, Abstr. Appl. Anal. 2014 (2014), ID 736021, 6 pp.
[17] Z.-T. Wen and Z. Ye, Wimam-Valiron theorem for q-difference, Annales AcademiæScientiarum FennicæMathematica 41 (2016), 305-312.
[18] P. M. Wong, H. F. Law, and P. P. W. Wong, A second main theorem on \mathbb{P}^{n} for difference operator, Sci. China Ser. A 52 (2009), no. 12, 2751-758.
[19] J. Zhang and R. Korhonen, On the Nevanlinna characteristic of $f(q z)$ and its applications, J. Math. Anal. Appl. 369 (2010), no. 2, 537-544.

Thi Tuyet Luong
Department of Mathematics
National University of Civil Engineering
55 Giai Phong str., Hanoi, Vietnam
Email address: luongtuyetdhxd@gmail.com
Dang Tuyen Nguyen
Department of Mathematics
National University of Civil Engineering
55 Giai Phong str., Hanoi, Vietnam
Email address: tuyennd@nuce.edu.vn
Duc Thoan Pham
Department of Mathematics
National University of Civil Engineering
55 Giai Phong str., Hanoi, Vietnam
Email address: thoanpd@nuce.edu.vn

[^0]: Received November 20, 2016; Revised June 18, 2017; Accepted August 11, 2017.
 2010 Mathematics Subject Classification. Primary 53A10; Secondary 53C42, 30D35, 32H30.

 Key words and phrases. second main theorem, Nevanlinna theory, Casorati determinant, zero-order meromorphic mapping, hyperplanes.

