• Title/Summary/Keyword: second order diffraction

Search Result 88, Processing Time 0.026 seconds

COMPUTATION OF THE DYNAMIC FORCE COMPONENT ON A VERTICAL CYLINDER DUE TO SECOND ORDER WAVE DIFFRACTION

  • Bhatta, Dambaru
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.45-60
    • /
    • 2008
  • Here we consider the evaluation of the the dynamic component of the second order force due to wave diffraction by a circular cylinder analytically and numerically. The cylinder is fixed, vertical, surface piercing in water of finite uniform depth. The formulation of the wave-structure interaction is based on the assumption of a homogeneous, ideal, incompressible, and inviscid fluid. The nonlinearity in the wave-structure interaction problem arises from the free surface boundary conditions, namely, dynamic and kinematic free surface boundary conditions. We expand the velocity potential and free surface elevation functions in terms of a small parameter and then consider the second order diffraction problem. After deriving the pressure using Bernoulli's equation, we obtain the analytical expression for the dynamic component of the second order force on the cylinder by integrating the pressure over the wetted surface. The computation of the dynamic force component requires only the first order velocity potential. Numerical results for the dynamic force component are presented.

  • PDF

A Time-Domain Approach for the Second-Order Diffraction Problem Around Circular Cylinders in Random Waves

  • YONGHWAN KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 2001
  • This study concentrates on the second-order diffraction problem around circular cylinders in multi-frequency waves. The method of solution is a time-domain Rankine panel method which adopts a higher-order approximation for the velocity potential and wave elevation. In the present study, the multiple second-order quadratic transfer functions are extracted from the second-order time signal generated in random waves, and the comparison with other bench-mark test results shows a good agreement. This approach is directly applicable to prediction of nonlinear forces on offshore structures in random ocean.

  • PDF

NONLINEAR FREE SURFACE CONDITION DUE TO SECOND ORDER DIFFRACTION BY A PAIR OF CYLINDERS

  • BHATTA DAMBARU D.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.171-182
    • /
    • 2005
  • An analysis of the non-homogeneous term involved in the free surface condition for second order wave diffraction on a pair of cylinders is presented. In the computations of the nonlinear loads on offshore structures, the most challenging task is the computation of the free surface integral. The main contribution to this integrand is due to the non-homogeneous term present in the free surface condition for second order scattered potential. In this paper, the free surface condition for the second order scattered potential is derived. Under the assumption of large spacing between the two cylinders, waves scattered by one cylinder may be replaced in the vicinity of the other cylinder by equivalent plane waves together with non-planner correction terms. Then solving a complex matrix equation, the first order scattered potential is derived and since the free surface term for second order scattered potential can be expressed in terms of the first order potentials, the free surface term can be obtained using the knowledge of first order potentials only.

Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.139-160
    • /
    • 2015
  • The global performance of the 5MW OC4 semisubmersible floating wind turbine in random waves was numerically simulated by using the turbine-floater-mooring fully coupled and time-domain dynamic analysis program FAST-CHARM3D. There have been many papers regarding floating offshore wind turbines but the effects of second-order wave-body interactions on their global performance have rarely been studied. The second-order wave forces are actually small compared to the first-order wave forces, but its effect cannot be ignored when the natural frequencies of a floating system are outside the wave-frequency range. In the case of semi-submersible platform, second-order difference-frequency wave-diffraction forces and moments become important since surge/sway and pitch/roll natural frequencies are lower than those of typical incident waves. The computational effort related to the full second-order diffraction calculation is typically very heavy, so in many cases, the simplified approach called Newman's approximation or first-order-wave-force-only are used. However, it needs to be justified against more complete solutions with full QTF (quadratic transfer function), which is a main subject of the present study. The numerically simulated results for the 5MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model test results by Technip/NREL/UMaine. The predicted motions and mooring tensions for two white-noise input-wave spectra agree well against the measure values. In this paper, the numerical static-offset and free-decay tests are also conducted to verify the system stiffness, damping, and natural frequencies against the experimental results. They also agree well to verify that the dynamic system modeling is correct to the details. The performance of the simplified approaches instead of using the full QTF are also tested.

Long Waves Generated by Short Wave Groups over a Step: Governing Equations (계단지형을 지나는 파군에 의한 장파의 생성: 지배방정식)

  • Jo, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.651-657
    • /
    • 2001
  • The second-order long waves generated by short wave groups propagating over a step are theoretically investigated. The diffraction of short waves is firstly formulated and the governing equations of second-order long waves are then derived by using a multiple-scale perturbation method. It is observed that free and locked long waves are generated and propagated with different velocities.

  • PDF

A Study on the Second-Order Water Level Variation (2차근사 수위변화에 관한 연구)

  • 김창제;이경연
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.83-87
    • /
    • 1996
  • This study aims to investigate theoretically and experimentally second-order water level variation. The simple method obtaining second-order water surface elevation and mean water level applicable to both progressive and diffraction wave, mean water level set-down, as well as set-up occurs and it is shown to be in good agreement with the experimental results.

  • PDF

Analysis of Scattering Characteristics by the Double Impedence Wedge (두 개의 임피던스 ?지에 의한 산란 특성 해석)

  • 서용원;장정민이민수이상설
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.363-366
    • /
    • 1998
  • High frequency scattered fields by a double impedence wedge are computed. In the procedure of the computation, arbitrary impedence faces and wedge angles are considered. The diffraction coefficients for the single, double and triple diffraction mechanism are founded. The second-order and third-order diffracted fields are approximated via the extended spectral ray method and the modified Pauli-Clemmow method of the steepest descent. The maliuzhinets function which is very difficult to obtain accurate value is approximated by the Volakis's asymtotic expression. Numerical computations are performed for the various wedge angles and surface impedence values.

  • PDF

On the Wave Drift Forces Acting on the Fixed 2-Dimensional Cylinder (고정 2차원 주상분에 작용하는 파랑표류력)

  • Hong, Seok-Won;Lee, Sang-Mu;Yang, Seung-Il
    • 한국기계연구소 소보
    • /
    • s.14
    • /
    • pp.135-144
    • /
    • 1985
  • A method is described to obtain the first order force and second order steady force on the fixed two dimensional submerged or semisubmerged cylinders at infinite depth of water due to regular waves. The first order diffraction wave velocity potential which describes the flow diffracted by a body is obtained numerically using source distribution method on the mean wetted surface. And a technique to remove the irregular frequency phenomena of the source distribution method is also applied. The second order steady force is calculates by means of direct integration of the pressures on the body as derived from the first order velocity potential and is also computed by means of reflection wave height derives from momentum conservation theory. The results are compared with those of published works, and show good agreement.

  • PDF

Final Diffraction Patterns of the Beam Splitters used in the Soft XRay Interferometer by a He-Ne Laser

  • Oh, Chul-Han;Choi, Dae-Uk;Park, Sung-Jin;Howells, M.R.;Moller, E.J.
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.7-10
    • /
    • 2000
  • The soft x-ray(10nm-100nm) interferometer is a modified Mach-Zehnder type interferometer and it consists of two beam-splitters and four totally reflecting mirrors. The beam-splitters used here are 50% transmission and 50% reflection grating type. The diffraction patterns of beam splitters(1st B.S.) were investigated with a He-Ne laser. The diffraction patterns produced by the soft x-ray interferometer (2nd B.S.) were also investigated in intensities positions. The diffraction patterns of 20 degree grazing incidence on the beam splitters(1st B.S.) show a circular array of spots. Both the reflected and the transmitted beams show the same patterns but symmetric circles on the screen. The maximum intensity appears roughly when n is in the zeroth and odd orders and the suppressed peak(missing order) appears when n is in even orders. Intensities of 3 center fringes(n = 0, $\pm$1) are stronger than others. These results confirm the reduced grating equation and make agree with the intensity distribution function. It was found that the final patterns produced by the soft x-ray interferometer (2nd B.S.) consisted of fine fringes which were caused by two of three diffraction beams that were arrived at the second beam-splitter.

Numerical Analysis of Nonlinear Effect of Wave on Refraction and Diffraction (파의 굴절 및 회절에 미치는 비선형 효과에 대한 수치해석)

  • 이정규;이종인
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.51-57
    • /
    • 1990
  • Based on second-order Stokes wave and parabolic approximation, a refraction-diffraction model for linear and nonlinear waves is developed. With the assumption that the water depth is slowly varying, the model equation describes the forward scattered wavefield. The parabolic approximation equations account for the combined effects of refraction and diffraction, while the influences of bottom friction, current and wind have been neglected. The model is tested against laboratory experiments for the case of submerged circular shoal, when both refraction and diffraction are equally significant. Based on Boussinesq equations, the parabolic approximation eq. is applied to the propagation of shallow water waves. In the case without currents, the forward diffraction of Cnoidal waves by a straight breakwater is studied numerically. The formation of stem waves along the breakwater and the relation between the stem waves and the incident wave characteristics are discussed. Numerical experiments are carried out using different bottom slopes and different angles of incidence.

  • PDF