• Title/Summary/Keyword: seat

Search Result 1,465, Processing Time 0.026 seconds

Measurement of the distributed dynamic stiffness of seats and analysis of dynamic properties of seats (시트 동적 강성 분포 측정 방법 및 시트 별 특성 분석)

  • Kim, Deokman;Min, Kyongwon;Park, Hyunkyu;Park, Junhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.994-995
    • /
    • 2014
  • Supporting stiffness of seats is an important component affecting dynamic characteristics cognized by a passenger. To analyze dynamic characteristic of a seat for vehicles operating on various road conditions, the seat vibration from road irregularity should be understood and compared. In this study, the seat is analyzed as distributed supporting system. The dynamic stiffness is measured using masses. The characteristic of the seats is analyzed by measuring distributed dynamic stiffness. The distributed dynamic stiffness of the seat is estimated on various locations and the effects of each component such as spatial distribution, compression level and vibration amplitude are analyzed. The influence of seat cover, elastic support and flexible polyurethane foam on the measured stiffness was analyzed.

  • PDF

An Application of hydraulic Semiactive Vibration Absorbers(SAVA) to Automotive Seat Suspension System (반능동 진동 흡수기의 자동차 시트 서스펜션에 대한 응용)

  • 모창기;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.160-171
    • /
    • 1999
  • The paper examines the ride performance enhancement that can be obtained by applying hydraulic semiactive vibration absorbers(SAVa) to alter the compliance characteristics of the seat/wheel suspension system. The work relies on a consistent model of the (nonlinear) hydrodynamics of the SAVA. A recently developed Lyapunov control scheme is used to provide regulation.. The performance is first examined assuming a quarter car with a seat/seat mounted mass. The paper then employs a quarter car/seat with a two mass ISO model of the seated human . The simulated results indicated that a reduction of 45% of the peak vertical acceleration is achievable with new system.

  • PDF

Simulation Experimental Analysis on a Seat Inventory Control Problem for Sequential Multiple Flights with Customer Choice Behavior (순차적으로 출발하는 여객노선에서 고객의 의사결정을 고려한 좌석재고 통제문제에 대한 모의실험 분석)

  • Park, Changkyu;Seo, Junyong;Hong, Yunsook
    • Korean Management Science Review
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • We conduct the future studies suggested by Park and Seo [3]. They considered a seat inventory control problem in which flights depart sequentially during a similar time-interval and passengers purchase available seats depending on individual customer choice behavior. Customer choice behavior can lead to one among a horizontal shift, a diversion-up, and a booking loss when a desired fare class is unavailable. We investigate how seat availability calculation method, booking limit control mechanism, seat inventory capacity, number of booking class, type of seat demand influence on revenues in an airline industry through thorough computer simulation experiments.

A Study on the Optimum Driving Posture for Designing Comfortable Driving Workstation (안락한 운전좌석 설계를 위한 최적 운전자세 연구)

  • 권규식;이정우;박세진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.1-8
    • /
    • 1999
  • This study was conducted to collect data concerning the preferred driving postures and adopted seat adjustment levels and to grasp relationships among drivers' body sizes, postural angles, and adopted seat positions and angles. Also optimum driving posture and seat adjustment level estimation models were constructed. An experiment was conducted to investigate observed optimum driving posture, and seat adjustment level. Thirty-six subjects (male=20, female=16) was selected to include a wide range of percentiles in the dimensions important for automotive driving workstation design and to be representative of the automotive driving population in Korea. New guidelines and estimation models for optimum postural comfort were developed. There were significant differences between male and female in postural angles but not in seat adjustment levels. Taller subjects preferred a more open and reclined posture. Estimation models enable us to estimate the quantitative optimum driving posture and seat adjustment level with some drivers' physical dimensions.

  • PDF

Strength Analysis of Luggage Intrusion into Recreational Vehicle Seat (RV 차량 시트의 적재물 침입 강도해석)

  • Bae Jinwoo;Kang Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.160-166
    • /
    • 2005
  • In recent, recreational vehicles, which efficiently provide wide inner space for various utilities, are highly preferred in automobile market. Though those vehicles enable to load much luggage in space behind the last seat, in case of frontal impact with high velocity the luggage strongly collides into the seat back and the passengers in. the last seat could be severely injured. Therefore, high strength against luggage intrusion is required for the last seat, and it is regulated by law of ECE R17. In this study, for a recreational vehicle under developing, an analysis technique for simulating seat crash in accordance with luggage intrusion test of ECE R17 was investigated. The results exhibited good correlation with the test ones.

Vibration Transfer Characteristic of Seat with the Auxiliary Plastic Member for Movie Theater Chair (플라스틱 보조재를 갖는 영화관 의자 시트의 진동전달 특성)

  • Kang, Hwa-Joong;Kim, Tae-Gyun;Moon, Deok-Hong
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.45-50
    • /
    • 2014
  • In the previous paper, we have reported on the development of foaming sponge seat with the auxiliary spring member and suggested new possibility of the special seat with the auxiliary plastic member for movie theater chair. In this study, we have examined the major design parameters needed in the development of a foaming sponge seat in which the mesh type plastic member are inserted to improve the vibration transfer effect of a chair seat. Through analyzing several prototypes by applying experimentation as well as the experimental modal analysis method, it was confirmed that the effect of vibration transfer can be improved through the use of a mesh type plastic member and applied to the design of practical chair seat.

A Convergence Study through Durability Analysis due to the Number of Automotive Seat Frame Supports (자동차 시트 프레임 지지대 개수에 따른 내구성 해석을 통한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.155-160
    • /
    • 2018
  • Automotive seat is a part to supply the convenience and safety of driver at driving. Recently, the seat has the role to protect driver from the outside impact or vibration and give the convenience except such a usage as chair. The design on structural function of the seat frame is important like the impact safety and durability. In this study, the seat is designed by adding one hollow rod to the part of seat back frame in order to enhance the structural safety and durability. This study was carried out by using CATIA and ANSYS as the design and analysis programs. As this study result through the structural and vibrational analyses, model 4 was seen to have the durability more superior than the other models. By utilizing this result, it is thought to be the useful material at designing the automotive seat frame with durability. It is possible to be grafted onto the convergence technique at the automotive seat frame and show the esthetic sense.

Comparison and Analysis for Evaluation of Ride and SEAT Index through Theoretical Seat-Human Body Model and Vehicle Test (시트-인체 해석 모델링과 차량 주행 시험을 통한 차량 승차감 평가와 시트 지수의 비교 및 분석)

  • Son, In-Suk;Kim, Jung-Hoon;Kang, Yeon-June
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • A simplified model of seat-human body is presented to analyze vibrations of human body on a seat of vehicle. The theoretical model having seven degrees-of-freedom is composed of the inter-connected masses, springs and dampers. Until now, evaluation of ride comfort has been usually performed only through vehicle tests. This study aims to complement shortcomings of conventional vehicle tests in evaluation of ride comfort by using the theoretical model. The acceleration values of the human body are obtained from frequency response functions of the theoretical model. Thereafter, Ride and SEAT indexes are acquired by considering response characteristics of the human body for the 12 axes that are presented in BS 6841. A vehicle test is carried out to measure the acceleration values for the three parts of the human body such as upper body, hip and foot. Ride and SEAT indexes of the vehicle test are also obtained by considering the response characteristics of the human body, of which results are compared with the values from the theoretical model. It is found that the theoretical results are in good agreement with the experimental results.

Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics (시트 동특성을 고려한 인체 진동 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5689-5695
    • /
    • 2012
  • In this study, vibration properties of seat and human body are analyzed through test and numerical analysis methods by taking into account the viscoelastic characteristics of polyurethane foam as seat material which is applied for vehicle. These viscoelastic characteristics which show nonlinear and quasi-static behavior are obtained by compression test. In addition, the viscous elastic property of polyurethane foam is modelled mathematically by using convolution integral and nonlinear stiffness model. In order to analyze the performance on ride comfort of seat, vertical vibration model is established by using dynamic model of seat and vertical vibration model of human body at ISO5982, and so the related motion equations are derived. A numerical analysis simulation is applied by using the nonlinear motion equation with Runge-Kutta integral method. The dynamic responses of seat and human body on the input of vibration acceleration measured at the floor of the railway vehicle are examined. The variation of the index value at ride comfort on seat design parameters is analyzed and the methodology on seat design is suggested.