• Title/Summary/Keyword: seasonal variation.

Search Result 1,678, Processing Time 0.027 seconds

Changes of Sedimentary Environment in the Tidal Flat of the Dammed Yeongsan River Estuary, Southwestern Coast of Korea (영산강 하구 갯벌의 퇴적환경 변화)

  • Kim, Young-Gil;Lee, Myong Sun;Chang, Jin Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.687-697
    • /
    • 2019
  • By monitoring sediment grain size and level variation of tidal flat surface for 6 years (2005-2011), and also by mooring TISDOS (tidal-flat sediment dynamics observation system) on the low intertidal flat in 2008, we investigated the sedimentary environment of tidal flat in the dammed Yeongsan River Estuary. The tidal flat of the Yeongsan River Estuary lost 82 % of its area because of coastal development projects, and a narrow tidal flat below mean sea level now remains. Most of the tidal flat sediments are composed of silt up to 70-94 %, and show the characteristics of clay deficiency and silt dominance. This is closely related with the coastal development, which led to the destruction of high tidal flats where most mud settled, and the modification of tidal current patterns. Moreover, the estuarine tidal-flat sediments reveal seasonal variation. They are coarse with abundant silt during windy autumn to spring, fine with abundant clay during the less-windy and high-discharge summer. This phenomenon indicates that the behavior of sediment particles on the low intertidal flats of the Yeongsan River Estuary is influenced by wind waves for silt and fresh water discharge and the tidal process for clay. Monitoring results of the altitude of tidal flat surface showed that the study area had eroded at an average rate of -2.6 cm/y during the period of 2005-2011, and also that an unusual deposition with a rate of 4 cm/y occurred in 2010. The erosion can be explained by an increased tidal amplitude and a strengthened ebb-dominant tidal asymmetry after the construction of an estuary dike and the Yeongam Kumho Seawall. The deposition in 2010 seems to have been closely related to the mass production of suspended materials from dredging of the estuary.

Chemical Speciation of Arsenic in the Water System from Some Abandoned Au-Ag Mines in Korea (국내 폐금은광산 주변 수계내의 As의 화학적 특성)

  • 이지민;이진수;전효택
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.481-490
    • /
    • 2003
  • The objectives of this study are (1) to determine the extent and degree of As contamination of the water and sediments influenced by mining activity of the abandoned Au-Ag mines, (2) to examine As speciation In contaminated water, (3) to monitor variation of As contamination in water system throughout the dry and wet seasons, and (4) to investigate the As chemical form in the sediments through the sequential extraction analyses. Natural water(mine water, surface water and groundwater) and sediments were collected in six abandoned Au-Ag mine(Au-bearing quartz veins) areas. The contamination level of As in mine water of the Dongil(524${\mu}m$/L) is more higher than the tolerance level(500 ${\mu}m$/L) for waste water of mine area in Korea. Elevated levels of As in stream water were also found in the Dongil(range of 63.7∼117.6 ${\mu}m$/L.) and Gubong(range of 56.1∼62.9 ${\mu}m$/L) mine areas. Arsenic contamination levels in groundwater used by drinking water were more significant in the Dongil(11.3∼63.5 ${\mu}m$/L), Okdong(0.2∼68.9 ${\mu}m$/L) and Gubong(2.0∼101.0${\mu}m$/L) mine areas. Arsenate[As(V), $H_2AsO_4^-$] is more dominant than arsenite[As(III), $H_3AsO_3$] in water system of the most mine areas. The concentration ratios of As(III) to As(total), however, extend to the 95% in stream water of the Okdong mine area and 70∼82% in groundwater of the Okdong and Dongjung mine areas. As a study of seasonal variation in the water system, relatively high levels of As from the dongil mine area were found in April rather than in September. Sequential extraction analysis showed that As was predominantly present as coprecipitated with Fe hydroxides from sediment samples of the Dongjung and Gubong mine(35.9∼40.5%), which indicates its possibility of re-extraction and inducing elevated contamination of As in the reductive condition. In sediments from the Dongil, Okdong and Hwachon mine area, high percentage(55.2∼83.4%) of As sulfide form was found.

Monitoring of the Suspended Sediments Concentration in Gyeonggi-bay Using COMS/GOCI and Landsat ETM+ Images (COMS/GOCI 및 Landsat ETM+ 영상을 활용한 경기만 지역의 부유퇴적물 농 도 변화 모니터링)

  • Eom, Jinah;Lee, Yoon-Kyung;Choi, Jong-Kuk;Moon, Jeong-Eon;Ryu, Joo-Hyung;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • In coastal region, estuaries have complex environments where dissolved and particulate matters are mixed with marine water and substances. Suspended sediment (SS) dynamics in coastal water, in particular, plays a major role in erosion/deposition processes, biomass primary production and the transport of nutrients, micropollutants, heavy metals, etc. Temporal variation in suspended sediment concentration (SSC) can be used to explain erosion/sedimentation patterns within coastal zones. Remotely sensed data can be an efficient tool for mapping SS in coastal waters. In this study, we analyzed the variation in SSC in coastal water using the Geostationary Ocean Color Imager (GOCI) and Landsat Enhanced Thematic Mapper Plus (ETM+) in Gyeonggi-bay. Daily variations in GOCI-derived SSC showed low values during ebb time. Current velocity and water level at 9 and 10 am is 37.6, 28.65 $cm{\cdot}s^{-1}$ and -1.23, -0.61 m respectively. Water level has increased to 1.18 m at flood time. In other words, strong current velocity and increased water level affected high SSC value before flood time but SSC decreased after flood time. Also, we compared seasonal SSC with the river discharge from the Han River and the Imjin River. In summer season, river discharge showed high amount, when SSC had high value near the inland. At this time SSC in open sea had low value. In contrast, river discharge amount from inland showed low value in winter season and, consequently, SSC in the open sea had high value because of northwest monsoon.

The Grazing Rates and Community Dynamics of Zooplankton in the Continuous River Stretch Ecosystem Include with Brackish Zone (기수 지역을 포함한 연속적인 강 구획 생태계 내에서의 동물플랑크톤의 군집 동태와 섭식율)

  • Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.462-470
    • /
    • 2006
  • The zooplankton community dynamics and grazing experiments was evaluated along a 40 km section of the lower Seomjin river system. Zooplankton was sampled twice a month from January 2005 to June 2006 at three sites (River mouth; RKO, Seomjin bridge: RK12 and Gurae bridge: RK36) in the main river channel. During the study period, the values of most limnological parameters in the three sites were fairly similar, except for conductivity. Annual variation of conductivity in River mouth and Seomjin bridge was more dramatic than which of the other site. There were statistically significant spatial and seasonal differences in zooplankton abundance (ANOVA, P<0.01). Total abundance of major zooplankton groups at both stations was much higher than in Gurae bridge. Among the macrozooplankton, cladocerans abundance was negligible in study sites during study periods. Community filtering rates (CFRs) for phytoplankton and bacteria varied from 0 to 50 mL $L^{-1}\;D^{-1}$ and from 0 to 45 mL $L^{-1}\;D^{-1}$, respectively. The spatial variation of CFRs for phytoplankton was significant (ANOVA, P<0.05). The CFRs of copepods for phytoplankton and bacteria was much higher than that of cladocerans at study sites. Total zooplankton filtering rates on bacteria were slightly lower than filtering rates on phytoplankton. The CFRs of microzooplankton (MICZ) for bacteria were much higher than for macrozooplankton (MACZ) at all sites. Considering the total zooplankton community, MICZ generally were more important than MACZ as grazers of bacteria and phytoplankton in freshwater zone, while MACZ were more important than MICZ as grazers of phytoplankton in brackish zone.

Throughfall, Stemflow and Interception Loss of the Natural Old-growth Deciduous and Planted Young Coniferous in Gwangneung and the Rehabilitated Young Mixed Forest in Yangju, Gyeonggido(I) - with a Special Reference on the Results of Measurement - (광릉(光陵) 활엽수(闊葉樹) 천연노령림(天然老齡林)과 침엽수(針葉樹) 인공유령림(人工幼齡林) 그리고 양주(楊洲) 사방지(砂防地) 혼효유령림(混淆幼齡林)의 수관통과우량(樹冠通過雨量), 수간유하량(樹幹流下量) 그리고 차단손실량(遮斷損失量)에 관하여(I) - 실험적(實驗的) 측정결과(測定結果)를 중심(中心)으로 -)

  • Kim, Kyongha;Jun, Jaehong;Yoo, Jaeyun;Jeong, Yongho
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.488-495
    • /
    • 2005
  • This study was conducted to understand the influences of forest structure on throughfall, stemflow and interception loss. The study plots included the natural old-growth deciduous, Pinus koraiensis and Abies holophylla forests in Gwangneung and the rehabilitated young mixed forest in Yangju, Gyeonggido. The Pinus koraiensis and Abies hotophylla had been planted in 1976. The rehabilitated young mixed forest had been established to control erosion in 1974. Total and net rainfall were monitored from March, 2003 to October, 2004. Tipping bucket rain gauge recorded total rainfall. Throughfall and stemflow were measured by custom-made tipping bucket and CR10X data logger at each $10m{\times}10m$ plots at intervals of 30 minutes. Interception loss in the Pinus koraiensis plot were most as 37.2% of total rainfall and least as 22.6% in the rehabilitated young mixed forest. Stemflow in the rehabilitated young mixed forest was 10.7% of total rainfall and stemflow in the Pinus koraiensis plot was 2.4%. The average throughfall ratio ranged from 66% to 77% depending on the canopy coverage. The relationship of stemflow and total rainfall represented in a linear regression equation though the variation of data was large. The ratio of stemflow-conversion was 2% of total rainfall in the Pinus koraiensis plot and 12% in the rehabilitated young mixed forest, respectively. The stem storage of the natural old-growth deciduous was the largest of 0.21 mm whereas that of the Pinus koraiensis plot was the least of 0.003 mm. A deciduous forest produced stemflow more than a coniferous forest due to a smooth bark and steeply angled branches. Interception loss of all study plots increased linearly as total rainfall increased. The distribution of interception loss data related in total rainfall became wider in a deciduous forest than a coniferous. It resulted from seasonality of leaf area index in a deciduous forest. As considered above results, it was confirmed that there were great differences of throughfall, stemflow and interception loss depending on forest stand structures. The simulation model for predicting interception loss must have parameters such as forest stand characteristics and LAI in order to describe the influence of forest structure on interception loss.

Temporal and Spatial Characteristics of Sediment Yields from the Chungju Dam Upstream Watershed (충주댐 상류유역의 유사 발생에 대한 시공간적인 특성)

  • Kim, Chul-Gyum;Lee, Jeong-Eun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.11
    • /
    • pp.887-898
    • /
    • 2007
  • A physically based semi-distributed model, SWAT was applied to the Chungju Dam upstream watershed in order to investigate the spatial and temporal characteristics of watershed sediment yields. For this, general features of the SWAT and sediment simulation algorithm within the model were described briefly, and watershed sediment modeling system was constructed after calibration and validation of parameters related to the runoff and sediment. With this modeling system, temporal and spatial variation of soil loss and sediment yields according to watershed scales, land uses, and reaches was analyzed. Sediment yield rates with drainage areas resulted in $0.5{\sim}0.6ton/ha/yr$ excluding some upstream sub-watersheds and showed around 0.51 ton/ha/yr above the areas of $1,000km^2$. Annual average soil loss according to land use represented the higher values in upland areas, but relatively lower in paddy and forest areas which were similar to the previous results from other researchers. Among the upstream reaches, Pyeongchanggang and Jucheongang showed higher sediment yields which was thought to be caused by larger area and higher fraction of upland than other upstream sub-areas. Monthly sediment yields at the main outlet showed same trend with seasonal rainfall distribution, that is, approximately 62% of annual yield was generated during July to August and the amount was about 208 ton/yr. From the results, we could obtain the uniform value of sediment yield rate and could roughly evaluate the effect of soil loss with land uses, and also could analyze the temporal and spatial characteristics of sediment yields from each reach and monthly variation for the Chungju Dam upstream watershed.

A Stochastic Study for the Emergency Treatment of Carbon Monoxide Poisoning in Korea (일산화탄소중독(一酸化炭素中毒)의 진료대책(診療對策) 수립(樹立)을 위한 추계학적(推計學的) 연구(硏究))

  • Kim, Yong-Ik;Yun, Dork-Ro;Shin, Young-Soo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.16 no.1
    • /
    • pp.135-152
    • /
    • 1983
  • Emergency medical service is an important part of the health care delivery system, and the optimal allocation of resources and their efficient utilization are essentially demanded. Since these conditions are the prerequisite to prompt treatment which, in turn, will be crucial for life saving and in reducing the undesirable sequelae of the event. This study, taking the hyperbaric chamber for carbon monoxide poisoning as an example, is to develop a stochastic approach for solving the problems of optimal allocation of such emergency medical facility in Korea. The hyperbaric chamber, in Korea, is used almost exclusively for the treatment of acute carbon monoxide poisoning, most of which occur at home, since the coal briquette is used as domestic fuel by 69.6 per cent of the Korean population. The annual incidence rate of the comatous and fatal carbon monoxide poisoning is estimated at 45.5 per 10,000 of coal briquette-using population. It offers a serious public health problem and occupies a large portion of the emergency outpatients, especially in the winter season. The requirement of hyperbaric chambers can be calculated by setting the level of the annual queueing rate, which is here defined as the proportion of the annual number of the queued patients among the annual number of the total patients. The rate is determined by the size of the coal briquette-using population which generate a certain number of carbon monoxide poisoning patients in terms of the annual incidence rate, and the number of hyperbaric chambers per hospital to which the patients are sent, assuming that there is no referral of the patients among hospitals. The queueing occurs due to the conflicting events of the 'arrival' of the patients and the 'service' of the hyperbaric chambers. Here, we can assume that the length of the service time of hyperbaric chambers is fixed at sixty minutes, and the service discipline is based on 'first come, first served'. The arrival pattern of the carbon monoxide poisoning is relatively unique, because it usually occurs while the people are in bed. Diurnal variation of the carbon monoxide poisoning can hardly be formulated mathematically, so empirical cumulative distribution of the probability of the hourly arrival of the patients was used for Monte Carlo simulation to calculate the probability of queueing by the number of the patients per day, for the cases of one, two or three hyperbaric chambers assumed to be available per hospital. Incidence of the carbon monoxide poisoning also has strong seasonal variation, because of the four distinctive seasons in Korea. So the number of the patients per day could not be assumed to be distributed according to the Poisson distribution. Testing the fitness of various distributions of rare event, it turned out to be that the daily distribution of the carbon monoxide poisoning fits well to the Polya-Eggenberger distribution. With this model, we could forecast the number of the poisonings per day by the size of the coal-briquette using population. By combining the probability of queueing by the number of patients per day, and the probability of the number of patients per day in a year, we can estimate the number of the queued patients and the number of the patients in a year by the number of hyperbaric chamber per hospital and by the size of coal briquette-using population. Setting 5 per cent as the annual queueing rate, the required number of hyperbaric chambers was calculated for each province and for the whole country, in the cases of 25, 50, 75 and 100 per cent of the treatment rate which stand for the rate of the patients treated by hyperbaric chamber among the patients who are to be treated. Findings of the study were as follows. 1. Probability of the number of patients per day follows Polya-Eggenberger distribution. $$P(X=\gamma)=\frac{\Pi\limits_{k=1}^\gamma[m+(K-1)\times10.86]}{\gamma!}\times11.86^{-{(\frac{m}{10.86}+\gamma)}}$$ when$${\gamma}=1,2,...,n$$$$P(X=0)=11.86^{-(m/10.86)}$$ when $${\gamma}=0$$ Hourly arrival pattern of the patients turned out to be bimodal, the large peak was observed in $7 : 00{\sim}8 : 00$ a.m., and the small peak in $11 : 00{\sim}12 : 00$ p.m. 2. In the cases of only one or two hyperbaric chambers installed per hospital, the annual queueing rate will be at the level of more than 5 per cent. Only in case of three chambers, however, the rate will reach 5 per cent when the average number of the patients per day is 0.481. 3. According to the results above, a hospital equipped with three hyperbaric chambers will be able to serve 166,485, 83,242, 55,495 and 41,620 of population, when the treatmet rate are 25, 50, 75 and 100 per cent. 4. The required number of hyperbaric chambers are estimated at 483, 963, 1,441 and 1,923 when the treatment rate are taken as 25, 50, 75 and 100 per cent. Therefore, the shortage are respectively turned out to be 312, 791. 1,270 and 1,752. The author believes that the methodology developed in this study will also be applicable to the problems of resource allocation for the other kinds of the emergency medical facilities.

  • PDF

Long-term (2002~2017) Eutropication Characteristics, Empirical Model Analysis in Hapcheon Reservoir, and the Spatio-temporal Variabilities Depending on the Intensity of the Monsoon (합천호의 장기간 (2002~2017) 부영양화 특성, 경험적 모델 분석 및 몬순강도에 따른 시공간적 이화학적 수질 변이)

  • Kang, Yu-Jin;Lee, Sang- Jae;An, Kwang-Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2019
  • The objective of this study was to analyze eutrophication characteristics, empirical model analysis, and variation of water quality according to monsoon intensity in Hapcheon Reservoir for 16 years from 2002 to 2017. Long-term annual water quality analysis showed that Hapcheon Reservoir was in a meso-nutrition to eutrophic condition, and the eutrophic state intensified after the summer monsoon. Annual rainfall volume (high vs. low rainfall) and the seasonal intensity in each year were the key factors that regulate the long-term water quality variation provided that there is no significant change of the point- and non-point source in the watershed. Dry years and wet years showed significant differences in the concentrations of TP, TN, BOD, and conductivity, indicating that precipitation had the most direct influence on nutrients and organic matter dynamics. Nutrient indicators (TP, TN), organic pollution indicators (BOD, COD), total suspended solids, and chlorophyll-a (Chl-a), which was an estimator of primary productivity, had significant positive relations (p<0.05) with precipitation. The Chl-a concentration, which is an indicator of green algae, was highly correlated with TP, TN, and BOD, which differed from other lakes that showed the lower Chl-a concentration when nutrients increased excessively. Empirical model analysis of log-transformed TN, TP, and Chl-a indicated that the Chl-a concentration was linearly regulated by phosphorus concentration, but not by nitrogen concentration. Spatial regression analysis of the riverine, transition, and lacustrine zones of $log_{10}TN$, $log_{10}TP$, and $log_{10}CHL$ showed that TN and Chl-a had significant relations (p<0.005) while TN and Chl-a had p > 0.05, indicating that phosphorus had a key role in the algal growth. Moreover, the higher correlation of both $log_{10}TP$ and $log_{10}TN$ to $log_{10}CHL$ in the riverine zone than the lacustrine zone indicated that there was little impact of inorganic suspended solids on the light limitation in the riverine zone.

Thrips Infesting Hot Pepper Cultured in Greenhouses and Variation in Gene Sequences Encoded in TSWV (시설재배지 고추를 가해하는 총채벌레류와 TSWV 유전자 서열 변이)

  • Kim, Chulyoung;Choi, Duyeol;Kang, Jeong Hun;Ahmed, Shabbir;Kil, Eui-Joon;Kwon, Gimyeon;Lee, Gwan-Seok;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.60 no.4
    • /
    • pp.387-401
    • /
    • 2021
  • Thrips infesting hot peppers were monitored in greenhouses using yellow sticky traps. In addition, the hot peppers infected with tomato spotted wilt virus (TSWV) were observed during the monitoring period. The flower thrips (Frankliniella intonsa) were initially trapped at a low density just after transplanting seedlings of hot peppers at late March. The western flower thrips (Frankliniella occidentalis) were trapped after mid April. These two thrips represented more than 98% of the total thrips attracted to the traps after May, in which F. intonsa showed higher occurrence frequency than F. occidentalis. The total number of thrips had two peaks at mid May with a small and short-term peak and at June-July with a large and long-term peak. The trapped thrips exhibited inconsistent sex ratios, suggesting a seasonal parthenogenesis. Different geographical populations were varied in cytochrome oxidase I sequences, in which local populations in Andong shared a high sequence similarity. TSWV-infected hot peppers, which might be mediated by these two thrips species, were observed and confirmed by an immunoassay kit and a molecular diagnosis using RT-PCR. In addition, the TSWV was detected in F. occidentalis collected from the infected hot peppers. Three open reading frames (NSS, N, and NSM) of the isolated TSWV genomes were sequenced and showed multiple point mutations containing missense mutations among geographical variants. When the isolated TSWV was fed to nonvirulent thrips of F. occidentalis, the virus was detected in both larvae and adults. However, the viral replication occurred in larvae, but not in adults.

Spatio-temporal Variation of Fish Communities in Open Estuary, Seomjin River Estuary and Gwangyang Bay Coast (열린 하구인 섬진강 하구 및 광양만 연안 어류 군집의 시공간적 변화)

  • Sun Ho Lee;Won-Seok Kim;Jae-Won Park;Hyunbin Jo;Wan-Ok Lee;Tae Sik Yu;Hyo Gyeom Kim;Chang Woo Ji;Ihn-Sil Kwak
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.132-144
    • /
    • 2022
  • The fish community in the Seomjin River-Seomjin River Estuary-Gwangyang Bay coast continuum was investigated three times from March 2019 to October 2019. The collected species at the eight sites during the survey period were 49 species belonging to 31 families, including two endangered species. According to Bray-Curtis similarities, observations were divided into four groups based on the fish community composition; two groups (group 1, 2) and two uncategorized groups (group 3, 4). ANOSIM based on spatial and temporal groupings indicated that the spatial differences in fish communities (R=0.398, P=0.001) were relatively more important than the temporal differences (analysis of similarities, R=0.273, P=0.002). In particular, there were significant differences between groups 1 and 2 (analysis of similarities, R=0.556, P=0.001), and similarity percentage analysis revealed that Argyrosomus argentatus (9.4%), Favonigobius gymnauchen (6.9%) and Konosirus punctatus (5.9%) contributed to these differences of fish assemblages for each group. The fish fauna distributed in the Seomjin River-Gwangyang Bay ecosystem were spatially divided and the number of species and number of individuals showed seasonal differences. This study could be a basis for understanding changes in the fish community and implementing conservation and management strategies on major species within a continuous environment of the river-estuary-ocean continuum.