• 제목/요약/키워드: seasonal variation.

Search Result 1,678, Processing Time 0.025 seconds

Community Structure of Fauna Collected by a Fence Net on Ganghwa Tidal Flat in the Han River Estuary, Korea (한강 하구역 강화 갯벌 조간대 건간망에 어획된 유영생물 군집구조)

  • Hwang, Sun-Do;Rhow, Jin-Goo;Lee, Sun-Mi;Park, Ji-Young;Hwang, Hak-Jin;Im, Yang-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.4
    • /
    • pp.166-175
    • /
    • 2010
  • Seasonal variation in species composition of estuarine fauna in the Han River estuary was determined by analyzing monthly samples collected on the intertidal flat of Ganghwa Island by a fence net from April to December 2009. Total number of species was 57: 34 species of fishes, 20 species of crustacean, 2 species of cephalopods and 1 species of jellyfish. Of a total of 57 species, Portunus trituberculatus (57.2%), Palaemon gravieri (7.1%), Collichthys lucidus (7.0%), Hemigrapsus sanguineus (6.2%) and Exopalaemon carinicauda (4.7%) were predominated in abundance. Diverse species were occurred in spring and autumn, and abundance was high in autumn. Chelon haematocheilus, Synechogobius hasta, Co ilia nasus, P. gravieri and E. carinicauda were classified as the brackish residence species. P. trituberculatus, C. lucidus, Mugil cephalus and Cynoglossus joyneri were coastal migratory species which use the estuary as nursing and feeding grounds. Diadromous species (such as Takifogu obscurus, Anguilajaponica and Eriocheir sinensis) and freshwater fish (Carassius auratus) were also collected.

Inter-annual Variation of Phytoplankton Community Structure in Aquacultural Areas of Tongyeong, SE Coastal Waters of Korea (통영 양식장 해역의 식물플랑크톤 군집의 연간변동)

  • Lim, Weol-Ae;Lee, Young-Sik;Kang, Young-Sil;Kim, Seong-Soo;Kim, Seong-Hyun;Choi, Hye-Sung;Hur, Young-Baek;Lee, Tae-Seek;Lee, Jae-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.4
    • /
    • pp.158-165
    • /
    • 2010
  • Phytoplankton community structure is one of the indicators that can explain the enviromnental characteristics of coastal waters. In this study, phytoplankton community structure and water quality of aquaculture area were investigated for understanding regional enviromnental characteristics. Thirty stations in aquaculture areas of Tongyeong, southeast coast of Korea, were investigated monthly from January to December, 2009. Phytoplankton community, meteorologic dada and enviromnent factors including temperature, salinity, transparency, nutrients and chlorophyll a were also examined. Chaetoceros spp. and unidentified small flagellates were dominant species in all the year round. Pseudo-nitzschia spp., Dictyocha spp., and Nitzschia longissima were dominant in June to October being summer season, and Skeletonema costatum, Thalassiosira spp., Eucamphia zodiacus, Akashiwo sanguinea, Gymnodinium spp. and Asterionella japonicus appeared as dominant species in the rest of months. Dinoflagellate blooms occurred 3 times in near Hansan Bay and around Saryang-do, and the highest chlorophyll a was found in Hansan Bay. Species diversity of phytoplankton was lower in Hansan and Womnum Bay, and diatom was more abundant than dinoflagellates in Mireuk-do waters. These results showed that phytoplankton community varied by the seasonal and geographical characteristics, and recent increase of water temperature and heavy rain may affect on phytoplankton community structure.

A study of origins and characteristics of metallic elements in PM10 and PM2.5 at a suburban site in Taean, Chungchengnam-do (충청남도 태안 교외대기 PM10, PM2.5의 중금속 농도 특성과 기원 추적연구)

  • Sangmin Oh;Suk-Hee Yoon;Jaeseon Park;Yu-Jung Heo;Soohyung Lee;Eun-Jin Yoo;Min-Seob Kim
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.111-128
    • /
    • 2023
  • Chungcheongnam-do has various emission sources, including large-scale facilities such as power plants, steel and petrochemical industry complexes, which can lead to the severe PM pollution. Here, we measured concentrations of PM10, PM2.5, and its metallic elements at a suburban site in Taean, Chungcheongnam-do from September 2017 to June 2022. During the measurement period, the average concentrations of PM10 and PM2.5 were 58.6 ㎍/m3 (9.6~379.0 ㎍/m3) and 35.0 ㎍/m3 (6.1~132.2 ㎍/m3), respectively. The concentration of PM10 and PM2.5 showed typical seasonal variation, with higher concentration in winter and lower concentration in summer. When high concentrations of PM2.5 occurred, particulary in winter, the fraction of Zn and Pb components considerably increased, indicating a significant contribution of Zn and Pb to high-PM2.5 concentration. In addition, Zn and Pb exhibited the highest correlation coefficient among all other metallic elements of PM2.5. A backward trajectory cluster analysis and CPF model were performed to examine the origin of PM2.5. The high concentration of PM2.5 was primarily influenced by emissions from industrial complexes located in the northeast and northwest areas.

Characteristics of temporal-spatial variations of zooplankton community in Gomso Bay in the Yellow Sea, South Korea (서해 곰소만에 출현하는 동물플랑크톤 군집의 시·공간적 변동 특성)

  • Young Seok Jeong;Min Ho Seo;Seo Yeol Choi;Seohwi Choo;Dong Young Kim;Sung-Hun Lee;Kyeong-Ho Han;Ho Young Soh
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.720-734
    • /
    • 2023
  • To understand the spatiotemporal distribution pattern of zooplankton and the environmental factors influencing zooplankton abundance in Gomso Bay, major harvesting area of Manila clam (Venerupis philippinarum) in South Korea, zooplankton sampling was conducted four times in autumn (October 2022), winter (January 2023), early spring (March 2023), and spring (May 2023). Among the environmental factors of Gomso Bay, water temperature, chlorophyll a concentration (Chl-a), dissolved oxygen (DO), and pH observed different patterns, while salinity and suspended particulate matter(SPM) showed no significant statistical differences between the survey periods. The zooplankton in Gomso Bay occurred 33, 29, 27, and 29 taxonomic groups during each respective survey period. In October 2022 and May 2023, arthropod plankton were dominated, while in January and March 2023, protozoa were primarily dominant. Among the Arthropods, copepods including Acartia hongi, Paracalanus parvus s. l., Corycaeus spp., and Oithona spp. commonly found along Korean coastal areas of the Yellow Sea, were dominated. Cluster analysis based on zooplankton abundance indicated a single community (stable condition) in each season, attributed to low dissimilarity distances, while three distinct clusters (autumn, winter-early spring, spring) between seasons indicated a highly seasonal environment in Gomso Bay.

Evaluation of the Applicability of Major Domestic and International Forest fire indices: A Case Study in the Eastern Region of the Taebaek Mountain Range (국내외 주요 산불위험지수의 국내 적용성 평가: 태백산맥 동쪽 지역을 대상으로)

  • Jeong-Hyeok Ma;Chulsang Yoo
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.204-218
    • /
    • 2024
  • In this study, we evaluate the applicability of domestic and international forest fire indices in Korea. To accomplish this objective, we first compare the structures of widely-used forest fire indices worldwide. Then, the application results of these forest fire indices are evaluated by comparing them with the annual and seasonal variations in actual forest fire occurrences in Korea. Finally, we select indices suitable for domestic application and propose directions to improve their appropriate applicabilities. The considered forest fire indices include MI, KBDI, FFWI, and mFFWI developed in the United States, NI, ZhI, and MNI developed in Russia, and DWI developed in Korea. This study considers the East Coast region as a study area, and the number of forest fire occurrences is referenced from the forestry statistics yearbook provided by the Korea Forest Service. As results, first, most forest fire indices do not adequately reproduce the actual annual forest fire occurrences as its variation is so small. However, most indices are found to effectively represent the monthly variations. Based on the correlation analysis between forest fire indices and actual forest fire occurrences, mFFWI, MI, ZhI, and DWI are selected as suitable indices for the East Coast region. However, these indices are still not satisfactory to adequately represent the forest fire occurrences in Korea, suggesting the need for further improvements. Each index has its own different aspects to be improved and, therefore, evaluation of these indices may be available only after further improvements are completed.

Limno-Biological Investigation of Lake Ok-Jeong (옥정호의 육수생물학적 연구)

  • SONG Hyung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-25
    • /
    • 1982
  • Limnological study on the physico-chemical properties and biological characteristics of the Lake Ok-Jeong was made from May 1980 to August 1981. For the planktonic organisms in the lake, species composition, seasonal change and diurnal vertical distribution based on the monthly plankton samples were investigated in conjunction with the physico-chemical properties of the body of water in the lake. Analysis of temperature revealed that there were three distinctive periods in terms of vertical mixing of the water column. During the winter season (November-March) the vertical column was completely mixed, and no temperature gradient was observed. In February temperature of the whole column from the surface to the bottom was $3.5^{\circ}C$, which was the minimum value. With seasonal warming in spring, surface water forms thermoclines at the depth of 0-10 m from April to June. In summer (July-October) the surface mixing layer was deepened to form a strong thermocline at the depth of 15-25 m. At this time surface water reached up to $28.2^{\circ}C$ in August, accompanied by a significant increase in the temperature of bottom layer. Maximum bottom temperature was $r5^{\circ}C$ which occurred in September, thus showing that this lake keeps a significant turbulence Aehgh the hypolimnial layer. As autumn cooling proceeded summer stratification was destroyed from the end of October resulting in vertical mixing. In surface layer seasonal changes of pH were within the range from 6.8 in January to 9.0 in guutuost. Thighest value observed in August was mainly due to the photosynthetic activity of the phytoplankton. In the surface layer DO was always saturated throughout the year. Particularly in winter (January-April) the surface water was oversaturated (Max. 15.2 ppm in March). Vertical variation of DO was not remarkable, and bottom water was fairly well oxygenated. Transparency was closely related to the phytoplankton bloom. The highest value (4.6 m) was recorded in February when the primary production was low. During summer transparency decreased hand the lowest value (0.9 m) was recorded in August. It is mainly due to the dense blooming of gnabaena spiroides var. crassa in the surface layer. A. The amount of inorganic matters (Ca, Mg, Fe) reveals that Lake Ok-Jeong is classified as a soft-water lake. The amount of Cl, $NO_3-N$ and COD in 1981 was slightly higher than those in 1980. Heavy metals (Zn, Cu, Pb, Cd and Hg) were not detectable throughout the study period. During the study period 107 species of planktonic organisms representing 72 genera were identified. They include 12 species of Cyanophyta, 19 species of Bacillariophyta, 23 species of Chlorophyta, 14 species of Protozoa, 29 species of Rotifera, 4 species of Cladocera and 6 species of Copepoda. Bimodal blooming of phytoplankton was observed. A large blooming ($1,504\times10^3\;cells/l$ in October) was observed from July to October; a small blooming was present ($236\times10^3\;cells/l$ in February) from January to April. The dominant phytoplankton species include Melosira granulata, Anabaena spiroides, Asterionella gracillima and Microcystis aeruginota, which were classified into three seasonal groups : summer group, winter group and the whole year group. The sumner group includes Melosira granulate and Anabaena spiroides ; the winter group includes Asterionella gracillima and Synedra acus, S. ulna: the whole year group includes Microtystis aeruginosa and Ankistrodesmus falcatus. It is noted that M. granulate tends to aggregate in the bottom layer from January to August. The dominant zooplankters were Thermocpclops taihokuensis, Difflugia corona, Bosmina longirostris, Bosminopsis deitersi, Keratelle quadrata and Asplanchna priodonta. A single peak of zooplankton growth was observed and maximum zooplankton occurrence was present in July. Diurnal vertical migration was revealed by Microcystis aeruginosa, M. incerta, Anabaena spiroides, Melosira granulata, and Bosmina longirostris. Of these, M. granulata descends to the bottom and forms aggregation after sunset. B. longirostris shows fairly typical nocturnal migration. They ascends to the surface after sunset and disperse in the whole water column during night. Foully one species of fish representing 31 genera were collected. Of these 13 species including Pseudoperilnmpus uyekii and Coreoleuciscus splendidus were indigenous species of Korean inland waters. The indicator species of water quality determination include Microcystis aeruginosa, Melosira granulata, Asterionelta gracillima, Brachionus calyciflorus, Filinia longiseta, Conochiloides natans, Asplanchna priodonta, Difflugia corona, Eudorina elegans, Ceratium hirundinella, Bosmina longirostris, Bosminopsis deitersi, Heliodiaptomus kikuchii and Thermocyclops taihokuensis. These species have been known the indicator groups which are commonly found in the eutrophic lakes. Based on these planktonic indicators Lake Ok-Jeong can be classified into an eutrophic lake.

  • PDF

Seasonal Patterns of Reservoir Thermal Structure and Water Column Mixis and Their Modifications by Interflow Current (인공호에서 수온의 수직분포와 수층혼합의 계절적 변화 및 중층수 유입 현상의 영향)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.9-19
    • /
    • 2001
  • contrasting monsoon between 1993 and 1994 produced an interannual difference in hydrology. Theoretical water residence time (TWRT) in monsoon 1993 averaged 27 d, which was>3 months shorter compared to the TWRT in monsoon 1994. A dominant physical process influencing thermal stratification, water movement, and mixing regime was an interflow current in 1993. During summer 1993, river water plunged to mid-lake (location 27 km) and passed through the 10${\sim}$20m stratum of the reservoir, resulting in an isolation of epilimnetic lake water from advected river water. The interflow disrupted thermal stratification and produced a meta-hypolimnetic warming of >4$^{\circ}C$ downlake, thereby increased a mixing depth (>13 m). In contrast, during monsoon 1994 density currents were not observed and strong thermal stratification occurred in the entire reservoir, resulting in > 2 fold greater thermal resistance (8.2${\times}10^{5}$ erg)compared to 1993 (4.0${\times}10^{5}$ erg). This reservoir was identified as a typical warm monomictic reservoir which showed one mixis during early winter. The timing of overturn, however, differed between the two years as a result of distinct contrast in TWRT and thermal regime; overturn in 1993 occured about one month earlier relative to that in 1994. Hypolimnetic warming was predictable in this system; the variation in discharge accounted (Y = 4.35-0.06X+0.10X$^{2}$, p<0.0001)for 98% of the interannual variation in hypolimnetic temperature. Overall data suggest that thermal stability, the timing of fall overturn, and water residence time in this system are primarily regulated by the intensity of monsoon.

  • PDF

Effects of Nutrients and N/P Ratio Stoichiometry on Phytoplankton Growth in an Eutrophic Reservoir (부영양 저수지에서 식물플랑크톤 성장에 대한 제한영양염과 질소/인 비의 영향)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.36-46
    • /
    • 2004
  • We evaluated the effect of limiting nutrients and N/P ratio on the growth of phytoplankton in a small eutrophic reservoir from November 2002 to December 2003. Nutrient limitation was investigated seasonally using nutrient enrichment bioassay (NEB). DIN/DTP and TN/TP ratio (by weight) of the reservoir during the study period ranged 17${\sim}$187 and 13${\sim}$60, respectively. Most of nitrogen in the reservoir account for $NO_3$-N, but sharp increase of ammonia was evident during the spring season. Seasonal variation of dissolved inorganic phosphorus concentration was relatively small. DTP ranged 26.5${\sim}$10.1 ${\mu}g\;P\;L^{-1}$, and the highest and lowest concentration was observed in August and December, respectively. Chlorophyll a concentration ranged 28.8${\sim}$109.7 ${\mu}g\;L^{-1}$, and its temporal variation was similar to that of cell density of phytoplankton. Dominant phytoplankton species were Bacillariphyceae (Melosira varians) and Chlorophyceae (Dictyosphaerium puchellum) in Spring (March${\sim}$April). Cyanophyceae, such as Osillatoria spp., Microcystis spp., Aphanizomenon sp. dominated from May to the freezing time. TN/TP ratio ranged from 46 to 13 (Avg. 27${\pm}$6) from June to December when cyanobacteria (Microcystis spp.) dominated. p limitation for algal growth measured in all NEB experiments (17cases), while N limitation occurred in 8 out of 17 cases. The growth rates of phytoplankton slightly increased with decreasing of DIN/DTP ratio. Evident increase was observed in the N/P ratio of > 30, and it was sustained with DTP increase until 50 ${\mu}g\;P\;L^{-1}$. Under the same N/P mass ratio with the different N concentrations (0.07, 0.7and 3.5 mg N $L^{-1}$), Microcystis spp. showed the highest growth rate in the N/P ratio of< 1 with nitrogen concentration of 3.5 mg N $L^{-1}$). The responses of phytoplankton growth to phosphate addition were clearly greater with increase of N concentration. These results indicate that the higher nitrogen concentration in the water likely induce the stronger P-limitation on the phytoplankton growth, while nitrogen deficiency is not likely the case of nutrient limitation.

Comparison of Green Color Retention of Zoysiagrass and Cool-season Grass under Multilayer System, USGA System, and Mono-layer System of Sports Field (스포츠용 다단구조, USGA구조 및 약식구조 지반에서 한국잔디 및 한지형 잔디의 녹색기간 비교)

  • Kim, Kyoung-Nam
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.342-353
    • /
    • 2016
  • This study was initiated to evaluate green color retention under three different soil systems. Several turfgrasses were evaluated in multi-layer, USGA, and mono-layer systems. Turfgrass entries were comprised of three cultivars of Korean lawngrass (Zoysia japonica Steud.) as warm-season grass (WSG) and three blends and three mixtures of Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), and tall fescue (TF, Festuca arundinacea Schreb.) as cool-season grass (CSG). Significant differences were observed in visual turf color and green color retention among soil systems and turfgrasses. Both the multi-layer and USGA systems were highly associated with better color ratings and longer color retention, as compared with the mono-layer system. Seasonal variation of visual turf color greatly occurred from late December to early spring. CSG exhibited longer color retention than did WSG. The latter maintained green color for approximately 6 months, regardless of the soil system. Spring green-up of Korean lawngrass occurred from early to middle May, while it underwent discoloration from late October to early November. Among the CSGs green-up occurred between early March and early April and leaf color was maintained until middle December to early February. Therefore, the CSGs were green for 8.5 to 11 months, depending on turfgrass and soil system. The mean period of green color duration across all soil systems was approximately 10-11, 9-10 and 8.5-9.0 months for PR, KB and TF, respectively. As for the CSG mixtures, the greater the proportion of PR, the longer the green color retention, while the higher the proportion of TF, the shorter the color retention. There was greater variation in green color duration among the CSGs than the WSGs. Across soil systems, color retention differences of 2 to 6 days were observed for the Korean lawngrass, but 7 to 36 days for the CSGs. These results demonstrate that green color retention varied greatly according to soil systems and also among turfgrasses. Selections of turfgrass and soil system should be made using a concept-oriented approach, when establishing garden, park, soccer field, golf course and other sports field. Information obtained in this study can be used to select soil systems and turfgrasses based on the expected degree of leaf color retention.

On the Spatio-temporal Distributions of Nutrients and Chlorophyll a Concentration, and the Environmental Factors on the Variation of Phytoplankton Biomass in the Shiahae, Southwestern Part of Korean Peninsula (시아해의 수질환경과 식물플랑크톤 생물량의 시ㆍ공간적 분포특성과 기초생물량변동에 영향을 미치는 환경특성)

  • 윤양호
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.77-93
    • /
    • 2000
  • Field survey on the spatio-temporal distribution of water quality and chlorophyll a concentration, and the environmental factors on the variation of phytoplankton biomass were carried out at the 23 stations for four seasons in the Shiahae, southwestern coast of Korean Peninsula from February to October in 1995. I made an analysis on biological factor as chlorophyll a concentration as well as environmental factors such as water temperature, salinity and nutrients; ammonia, nitrite, nitrate, dissolved inorganic nitrogen, phosphate, N/P ratio, silicate and Si/P ratio. The waters in the Shiahae were not stratified due to the tidal mixing and high velocity of tidal current. And the high productivity in photic layer were supported by high nutrients concentration from freshwater on lands and bottom waters The low depth of transparency in the Shiahae had a bad influence upon primary production and marine biology. In Shiahae had a sufficient nutrients for primary production during a year. Especially dissolved inorganic nitrogen and silicate were high, the other side, phosphate was low. The source of nutrients in summer and silicate supply depend on input of freshwater from lands, the other side, dissolved inorganic nitrogen and phosphate were depend on rather supplied from bottom layer by the mixing and input of seawater from outside than input of freshwater from lands. Phosphate seemed to become a limiting nutrient for the primary production at all area of Shiahae in winter and at the northern parts in other seasons. However, dissolved inorganic nitrogen seemed to do it at the southern parts in other seasons except winter. Silicate didn't become a limiting nutrient for diatoms in Shiahae. Phytoplankton biomass as measured by chlorophyll a concentration was very high all the year round, it was controlled by the combination of the several environmental factors, especially of nitrogen, phosphorus and the physical factors such as light intensity. [Spatio-temporal distribution, Seasonal fluctuation, Nnutrients, Chlorophyll a, Environmental factors, Nutrient source, Limiting Nutrient, Light, Shiahae] .

  • PDF