Effects of Nutrients and N/P Ratio Stoichiometry on Phytoplankton Growth in an Eutrophic Reservoir

부영양 저수지에서 식물플랑크톤 성장에 대한 제한영양염과 질소/인 비의 영향

  • Kim, Ho-Sub (Department of Biological Systems Engineering, Konkuk University) ;
  • Hwang, Soon-Jin (Department of Biological Systems Engineering, Konkuk University)
  • 김호섭 (건국대학교 지역건설환경공학과) ;
  • 황순진 (건국대학교 지역건설환경공학과)
  • Published : 2004.03.31

Abstract

We evaluated the effect of limiting nutrients and N/P ratio on the growth of phytoplankton in a small eutrophic reservoir from November 2002 to December 2003. Nutrient limitation was investigated seasonally using nutrient enrichment bioassay (NEB). DIN/DTP and TN/TP ratio (by weight) of the reservoir during the study period ranged 17${\sim}$187 and 13${\sim}$60, respectively. Most of nitrogen in the reservoir account for $NO_3$-N, but sharp increase of ammonia was evident during the spring season. Seasonal variation of dissolved inorganic phosphorus concentration was relatively small. DTP ranged 26.5${\sim}$10.1 ${\mu}g\;P\;L^{-1}$, and the highest and lowest concentration was observed in August and December, respectively. Chlorophyll a concentration ranged 28.8${\sim}$109.7 ${\mu}g\;L^{-1}$, and its temporal variation was similar to that of cell density of phytoplankton. Dominant phytoplankton species were Bacillariphyceae (Melosira varians) and Chlorophyceae (Dictyosphaerium puchellum) in Spring (March${\sim}$April). Cyanophyceae, such as Osillatoria spp., Microcystis spp., Aphanizomenon sp. dominated from May to the freezing time. TN/TP ratio ranged from 46 to 13 (Avg. 27${\pm}$6) from June to December when cyanobacteria (Microcystis spp.) dominated. p limitation for algal growth measured in all NEB experiments (17cases), while N limitation occurred in 8 out of 17 cases. The growth rates of phytoplankton slightly increased with decreasing of DIN/DTP ratio. Evident increase was observed in the N/P ratio of > 30, and it was sustained with DTP increase until 50 ${\mu}g\;P\;L^{-1}$. Under the same N/P mass ratio with the different N concentrations (0.07, 0.7and 3.5 mg N $L^{-1}$), Microcystis spp. showed the highest growth rate in the N/P ratio of< 1 with nitrogen concentration of 3.5 mg N $L^{-1}$). The responses of phytoplankton growth to phosphate addition were clearly greater with increase of N concentration. These results indicate that the higher nitrogen concentration in the water likely induce the stronger P-limitation on the phytoplankton growth, while nitrogen deficiency is not likely the case of nutrient limitation.

소규모 부영양 저수지에서 식물플랑크톤 성장에 대한 제한영양염과 N/P무게비의 영향을 평가하기 위해 2002년 11월부터 2003년 12월까지 이루어졌다. 조사기간 동안 수체 내 DIN/DTP과 TN/TP 무게비는 각각 17${\sim}$187,33${\sim}$60의 범위로 나타났다. 용존무기질소의 대부분은 질산성 질소($NO_3$-N)형태로 존재했으며, 봄에 일시적인 암모니아 농도의 증가가 나타났다. 반면에 무기인은 8.8${\sim}$0.6 ${\mu}g\;P\;L^{-1}$의 범위로 계절에 따른 변화는 적었으며, 용존총인은 26.5 ${\sim}$ 10.1 ${\mu}g\;P\;L^{-1}$로 8월에 가장 높았고 12월에 가장 낮은 농도를 나타냈다. 엽록소 a 농도는 28.8${\sim}$109.7 ${\mu}g\;L^{-1}$의 범위였고, 식물플랑크톤 세포밀도 변화와 유사한 계절적인 변화를 보였다. 봄에는 주로 규조류(Melosira varians)와 녹조류 (Dictyosphaerium puchellum)가 우점종으로 나타난 반면 5월부터 결빙 전까지는 Osillatoria SPP., Microcystis SPP., Aphanizomenon SP. 와 같은 남조류가 우점하였다. 남조류 군집 중 Microcystis SPP.가 우점한 6월부터 12월까지 수체 내 TN/TP비는 46${\sim}$13의 범위 (평균 27${\pm}$5)였다. 영양염 첨가실험의모든 경우(17번)에서 인에 의한 제한이 나타났으며, 질소제한은 8번에 걸쳐 나타났다. 식물플랑크톤 성장률은DIN/DTP비 30이하에서 가장 크게 나타났고, 인 농도50 ${\mu}g\;P\;L^{-1}$까지는 지속적으로 증가하였다. 절대 농도에 있어서 차이가 있으나, N/P비가 동일한 상태에서의 남조류 성장은 질소 농도가 3.5 mg N $L^{-1}$인 경우 N/P 비가 1인 상태에서 성장량이 가장 컸다. 인 첨가에 따른 성장은 질소농도가 높을수록 현저히 높게 나타났다. 이러한 결과들은 수체 내 질소농도가 높은 환경에서는 식물플랑크톤성장에 대한 강한 인 제한이 나타나기 쉬운 반면, 질소제한 가능성 이 상대적으로 적음을 의미한다.

Keywords

References

  1. 농업기반공사. 2001. 농업용수 수질측정망 조사 보고서
  2. APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed., APHA-AWWA-WEF, Washington, D.C., USA
  3. Brezonik, P.L., E.C. Blancher, V.B. Myers, C.L. Hilty, M.K.Leslie, C.R. Kratzer, G.D. Marbury, B.R. Snyder, T.L.Crisman and J.J. Messer. 1979. Factors affecting primary production in Lake Okeechobee, Florida-Report to the Florida Sugar Cane League. Rep. No. 07-79-01. Dept. of Environmental Engineering Science, University of Florida, Gainesville, Florida
  4. Caperon, J. 1968. Population growth responses of Isochrysis galbana. Ecol. 49: 866-872
  5. Davis, A.G. 1970. Iron, chelation and the growth of marine phytoplankton. 1. Growth kinetics and chlorophyll production in cultures of the euryhaline flagellateDunalliela tertiolecta under iron-limiting conditions. J. Mar. Biol. Assoc. U.K. 50: 65-86
  6. Downing, J.A. and E. McCauley. 1992. The nitrogen : phosphorus relationship in lakes. Limnol. Oceanogr. 37: 936-945
  7. Droop, M. R. 1968. Vitamin B12 and marine ecology. 4. The kinetics of uptake, growth and inhibition of Monochrysis lutheri. J. Mar. Biol. Assoc. U.K. 48: 689-733
  8. Forsberg, O., S.-O. Ryding, A. Forsberg and A. Claesson. 1978. Water chemical analyses and/or algal assay? Seawage effluent and polluted lake water studies. Mitt. Internat. Verein. Limnol. 21: 352-363
  9. Forsberg, O. and S.-O. Ryding. 1980. Eutrophication parameters and trophic state indices in 30 Swedish wastereceiving lakes. Arch. Hydrobiol. 89: 189-207
  10. Fuhs, G.W. 1969. Phosphorus content and rate of growth in the diatom Cycolotella nana and Thalassiosira fluviatilis. J. Phycol. 5: 305-321
  11. Fujimoto, N. and R. Sudo. 1997. Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N : P supply ratios and temperatures. Limnol. Oceonogr. 42: 250-256
  12. Goldman, J., D.A. Caron and M.R. Dennet. 1987. Nutrient cycling in a microflagellate food chain, 4. phytoplankton-microflagellate interactions. Mar. Ecol. Prog. Ser. 38: 75-87
  13. endrey, G.R. and E.B. Welch. 1974. Phytoplankton productivity in Findley Lake. Hydrobiol. 45: 45-63
  14. orne, A.J. 1979. Management of lakes containing Nfixing blue-green algae. Arch. Hydrobiol. 13: 133-144
  15. Howarth, R.W., R. Marino and J.J. Cole. 1988. Nitrogen fixation in freshwater, esturine, and marine ecosys-tems. 2. Biogeochemical controls. Limnol. Oceonogr. 33: 669-687
  16. Islam, M.R. and B.A. Whitton. 1992. Retention of Pnitrophenol and 4-methylumbelliferone by marine macroalgae and implications for measurement of alkaline phosphatase activity. J. Phycol. 32: 819-825
  17. Marker, A.F.H. 1972. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwater Biol. 2: 361-385
  18. Marker, A.F.H., E.A. Nusch, I. Rai and B. Riemann. 1980. The measurement of photosynthetic pigments in freshwaters and standardization of methods: Conclusions and recommendations. Arch. Hydrobiol. Beih. 14: 91-106
  19. McCauley, E., J.A. Downing and S. Watson. 1989. Sigmoid relationships between nutrients and chlorophyll among lakes. Can. J. Fish. Aquat. Sci. 46: 1171-1175
  20. Monod, J. 1950. La technique de culture continue: theorie at applications. Ann. Inst. pasteur Lille 79: 390-410
  21. Paerl, H.W., R.S. Fulton, P.H. Moisander and J. Dyble. 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World Journal 1: 76-113
  22. Patricia, A.S., W.H. Shaaw and P.A. Bukaveckss. 2000. Differences in nutrient limitation and grazer suppression of phytoplankton in seepage and drainage lakes of the Adirondack region, NY, USA. Freshwater Biol. 43: 391-407
  23. Perkins, R.G. and G.J.C. Underwood. 2000. Gradients of chlorophyll a and water chemistry along an eutrophic reservoir with determination of the limiting nutrient by In Situ nutrient addition. Wat. Res. 34: 713-724
  24. Ping, X.L., L. Sixin, T. Huijuan and L. Hong. 2003. The low TN;TP ratio, a cause or a result of Microcystis blooms?. Water Res. 37: 2073-2080
  25. Redfield, A.C., B.H. Ketchum and F.A. Richards. 1963. The influence of organisms on the composition of sea water, pp.26-27. In: The sea, 2 (M.N. Hill, ed.), Interscience, N.Y
  26. Rhee, G-Y. 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 9: 495-506
  27. Rhee, G.-Y. 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr. 23: 10-24
  28. Sheffer, M., S. Rinaldi, A. Grangnani, L.R. Mur and E.H. Nes. 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecol. 78: 272-282
  29. Smith, V. H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Sci. 221: 669-671
  30. mith, V.H., E. Willen and B. Karlsson. 1987. Predicting the summer peak biomass of four species of blue-green algae (cyanphyta/cyanobacteria) in Swedish lakes. Wat. Res. Bulletin. 23: 397-402
  31. Tilman, D. 1977. Resource competition between planktonic algae: An experimental and theoretical approach. Ecol. 58: 338-348
  32. Tilman, D. 1978. Ecological competition between algae: Experimental confirmation of resource based competition theory. Sci. 192: 463-465
  33. Tilman, D. 1982. Resource competition and community structure. Princeton Monographs in Population Biology 17. Princeton University Press
  34. Trimbee, A.M. and E.E. Prepas. 1987. Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lakes. Can. J. Fish. Aquat. Sci. 44: 1337-1342
  35. Welch, E.B. and T. Lindell. 1992. Nutrient limitation. In: Ecological Effects of Wastewater (E.B. Welch and T. Lindell, eds.), pp.134-135. Chapman & Hall press. London, Glasgow, New York, Tokyo, Melbourne, Madras
  36. Wetzel, R.G. 2001 Limnology 3rd edition. Academic Press. San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo
  37. Yelloly, J.M. and B.A. Whitton. 1996. Seasonal changes in ambient phosphate and phosphatase activities of the cyanobacterium Rivularia atra in interidal pools at Tyne Sands, Scotland. Hydrobiol. 325: 201-212