Inter-annual Variation of Phytoplankton Community Structure in Aquacultural Areas of Tongyeong, SE Coastal Waters of Korea

통영 양식장 해역의 식물플랑크톤 군집의 연간변동

  • 임월애 (국립수산과학원 남동해수산연구소) ;
  • 이영식 (국립수산과학원 남동해수산연구소) ;
  • 강영실 (국립수산과학원 동해수산연구소) ;
  • 김성수 (해양환경관리공단) ;
  • 김성연 (국립수산과학원 연구기획부) ;
  • 최혜승 (국립수산과학원 남동해수산연구소) ;
  • 허영백 (국립수산과학원 남동해수산연구소) ;
  • 이태식 (국립수산과학원 서해수산연구소) ;
  • 이재영 (국토해양부 해양환경정책과)
  • Received : 2010.06.21
  • Accepted : 2010.08.30
  • Published : 2010.11.30

Abstract

Phytoplankton community structure is one of the indicators that can explain the enviromnental characteristics of coastal waters. In this study, phytoplankton community structure and water quality of aquaculture area were investigated for understanding regional enviromnental characteristics. Thirty stations in aquaculture areas of Tongyeong, southeast coast of Korea, were investigated monthly from January to December, 2009. Phytoplankton community, meteorologic dada and enviromnent factors including temperature, salinity, transparency, nutrients and chlorophyll a were also examined. Chaetoceros spp. and unidentified small flagellates were dominant species in all the year round. Pseudo-nitzschia spp., Dictyocha spp., and Nitzschia longissima were dominant in June to October being summer season, and Skeletonema costatum, Thalassiosira spp., Eucamphia zodiacus, Akashiwo sanguinea, Gymnodinium spp. and Asterionella japonicus appeared as dominant species in the rest of months. Dinoflagellate blooms occurred 3 times in near Hansan Bay and around Saryang-do, and the highest chlorophyll a was found in Hansan Bay. Species diversity of phytoplankton was lower in Hansan and Womnum Bay, and diatom was more abundant than dinoflagellates in Mireuk-do waters. These results showed that phytoplankton community varied by the seasonal and geographical characteristics, and recent increase of water temperature and heavy rain may affect on phytoplankton community structure.

식물플랑크톤 군집은 그 해역의 환경특성을 잘 설명해 줄 수 있는 인자 중의 하나이다. 본 연구에서는 양식장 해역의 수질환경과 식물플랑크톤 군집의 년간 변동을 파악하고, 이를 기초로 해역별 환경 특성을 파악하고자 하였다. 2009년 1월에서 12월까지 매월 통영연안인 원문만, 한산만, 미륵도, 욕지도, 사량도 및 도산 평림해역의 30개 정점에서 식물플랑크톤 종조성과 수온, 염분, 영양염 및 chlorophyll a를 조사하였다. 수질환경 중 용존무기질소는 1, 2월과 12월, 용존무기인은 1, 2월, chl-a는 7월~10월이 가장 높았다. 식물플랑크톤 군집은 Chaetoceros spp.와 미동정된 소형 편모조류는 연중 우점하였고, 여름인 6~10월은 Pseudo-nitzschia spp., Dictyocha spp., Nitzschia longissima가 우점종으로 출현하였으며 그 밖의 계절은 Skeletonema costatum, Thalassiosira spp., Eucamphia zodiacus, Akashiwo sanguinea, Gymnodinium spp., Asterionella japonicus가 우점 출현하였다. 정점별로는 한산만, 사량도 북동쪽에서 외편모조 적조가 3회 발생하였으며, chl-a는 한산만에서 가장 높게 나타났다. 종다양성 지수는 원문만, 한산만과 도산평림해역에서 낮게 나타났고, 규조류와 외편모조류의 비율은 미륙도 서측해역에서 높았다. 우점식물플랑크톤의 출현은 각 해역의 시 공간적 특성을 나타내었으며, 최근 수온상승과 강우에 의한 식물플랑크톤 군집 변동도 예측되었다.

Keywords

Acknowledgement

Supported by : 국립수산과학원

References

  1. 경상남도, 2009. 2009년도 해양수산현황. pp.362.
  2. Barlow, R.G., 1980. The biochemical composition of phytoplankton in an upwelling region off South Africa. J. Exp. Mar. Biol. Ecol., 45: 83-93. https://doi.org/10.1016/0022-0981(80)90071-4
  3. Cho, C.H., 1991. Contribution and future direction in the study of aquacultural oceanography in Jinhae Bay, Korea. J. Aquaculture, 4: 129-136.
  4. Cho, C.H. and K.Y. Park, 1983. Eutrophication of bottom mud in shellfish farms, the Goseong-Jaran Bay. Bull. Korean Fish. Soc., 16: 260-264.
  5. Choi, W.J., Y.Y. Chun, J.H. Park and Y.C. Park, 1997. The influence of environmental characteristics on the fatness of pacific oyster, Crassostrea gigas, in Hansan-Koke Bay. J. Kor. Fish. Soc., 30: 794-803.
  6. Chung, Y.S., M.B. Yoon and H.S. Kim, 2004. On climate variations and changes observed in South Korea. Climatic Change, 66: 151-161. https://doi.org/10.1023/B:CLIM.0000043141.54763.f8
  7. Dortch, Q. and T.T. Packard, 1989. Differences in biomass structure between oligotrophic and eutrophic marine ecosystem. Deep-Sea Res., 36: 223-240. https://doi.org/10.1016/0198-0149(89)90135-0
  8. Hashioka, T. and Y. Yamanaka, 2007. Ecosystem change in the western North Pacific associated with global warming using 3D-NEMURO. Ecological Modelling, 202: 95-104. https://doi.org/10.1016/j.ecolmodel.2005.12.002
  9. Healey, F.P., 1975. Physiological indicators of nutrient deficiency in algae. Fsh. Mar. Servo Res. Dev. Tech. Rep., 585, pp. 30.
  10. Hecky, R.E., P. Campbell and L.L. Hendzel, 1993. The stioichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr., 38: 709-724. https://doi.org/10.4319/lo.1993.38.4.0709
  11. Hecky, R.E. and P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments; A review of recent evidence on the effects of enrichment. Limnol. Oceanogr., 33: 796-822. https://doi.org/10.4319/lo.1988.33.4_part_2.0796
  12. Kang, C.K., E.J. Choy, Y.B. Hur and J.I. Myeong, 2009. Isotopic evidence of particle size-dependent food partitioning in cocultured sea squirt Halocynthia roretzi and pacific oyster Crassostrea gigas. Aquat Biol., 6: 289-302. https://doi.org/10.3354/ab00126
  13. Kang, C.K., M.S. Park, P.Y. Lee, W.J. Choi and W.C. Lee, 2000. Seasonal variations in condition, reproductive activity and biochemical composition of the Pacific oyster, Crassostrea gigas(Thunberg), in suspended culture in two coastal bays of Korea. J. Shellfish Res., 19: 771-779.
  14. Kim, Y.O., W.J. Shim and K.D. Yum, 2007a. Implications for coastal ecosystem health assessments and their applications in Korea. Ocean and Polar Research, 29: 319-326. https://doi.org/10.4217/OPR.2007.29.4.319
  15. Kim, Y.O., H.W. Choi, M.C. Jang, P.K. Jang, W.J. Lee, K.S. Shin and M. Jang, 2007b. A brief review of approaches using planktonic organims to assess marine ecosystem health. Ocean and Polar Research, 29: 327-337. https://doi.org/10.4217/OPR.2007.29.4.327
  16. KMA, 2009. Precipitation data from http://www.kma.go.kr/weather/observation/past.cal.jsp.
  17. Laybourn-Parry J., 1992. Protozoan plankton ecology. Chapman & Hall, London. 231p.
  18. Lee, J.S., 1995. Isolation and some properties of bitter taste compounds from cultured oyster, Crassostrea gigas. Bull. Korean Fish. Soc., 28: 98-104.
  19. Lee, P.Y., C.K. Kang, W.J. Choi, W.C. Lee and H.S Yang, 2001. Temporal and spatial variation of particulate organic matter in the southeastern coastal bays of Korea. J. Korean Fish. Soc., 34: 57-69.
  20. Lee W.C., H.C. Kim, W.J. Choi, P.Y. Lee J.H. Koo and C.K. Park, 2002. Modification of an ecosystem model for carrying capacity of shellfish system. J. Korean Fish. Soc., 35: 386-394.
  21. Navarro, J.M., E. Clasing, G. Urrutia, G. Asencio, R. Stead and C. Herrera, 1993. Biochemical composition and nutritive value of suspended particulate matter over a tidal flat of southern Chile. Estuar. Coast. Shelf Sci., 37: 59-73. https://doi.org/10.1006/ecss.1993.1041
  22. Negri, A.P., O. Bunter, B. Jones, and L, Llewellyn, 2004. Effects of the bloom-forming alga Trichodesmium erythraeum on the pearl oyster Pinctada maxima. Aquaculture, 232: 91-102. https://doi.org/10.1016/S0044-8486(03)00487-3
  23. NFRDI, 1999. Harmful algal blooms in Korean coastal waters from 1997 to 1998. National Fisheries Reserch and Development Institute, Korea. 215pp.
  24. NFRDI, 2000. Harmful algal blooms in Korean coastal waters in 1999. National Fisheries Reserch and Development Institute, Korea. 206pp.
  25. NFRDI, 2009. htttp://www.nfrdi.re.kr.
  26. Parsons, R.R., M. Takahashi and B. Hargrave, 1984. Biological Oceanographic Process. 3rd ed., Pergamon Press.
  27. Pastoureaud, A., C. Dupuy, M.J. Chretiennot-Dinet, F. Lantoine and P. Loret, 2003. Red coloration of oysters along the French Atlantic coast during the 1998 winter season: implication of nano-planktoinc cryptophytes. Aquaculture, 228: 225-235. https://doi.org/10.1016/S0044-8486(03)00266-7
  28. Rebstock, G.A. and Y.S. Kang, 2003. A comparison of tree marine ecosystems surrounding the Korean peninsula: Responses to climate change. Progress in Oceanography, 59: 357-379. https://doi.org/10.1016/j.pocean.2003.10.002
  29. Reynolds, C.S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. p.388-433. In: Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge.
  30. Sato, Y., T. Oda, T. Muramatsu, Y. Matsuyama and T. Honjo, 2002. Photosensitizing hemolytic toxin in Heterocapsa circularisquama, a newly identified harmful red tide dinoflagellate. Aquatic Toxicology, 56: 191-196. https://doi.org/10.1016/S0166-445X(01)00191-6
  31. Shannon, C.E. and W. Wiener, 1963. The mathematical theory of communication. Univ. of Illinois Press, Urbana, pp. 125.
  32. Smayda, T.J., 2002. Adaptive ecology, growth strategies and the global bloom expansion of dinoflagellates. J. Oceanogr. 58: 281-294. https://doi.org/10.1023/A:1015861725470
  33. SPSS Inc., 2003. SPSS base 12.0 User's Guide. Chicago, IL, USA.
  34. Suh, Y.S., L.H. Jang and J.D. Hwang, 2003. Anomalous variation of the oceanic features around Korean waters related to the global change. J. of the Environmental Sciences, 12: 257-263. https://doi.org/10.5322/JES.2003.12.3.257
  35. Tomas, C.R., 1997. Identifying marine phytoplankton. Academic press, USA.
  36. Widdows, J., P. Fieth and C.M. Worrall, 1979. Relationships between seston, available food and feeding activity in the common mussel Mytilus edulis. Mar. Biol., 50: 195-207. https://doi.org/10.1007/BF00394201
  37. Xu, F.L, K.C. Lam, Z.Y. Zhao, W. Zhan, Y.D. Chen and S. Tao, 2004. Marine coastal ecosystem health assessment: A case study of the Tolo Harbour, Hong Kong, China. Ecol. Model., 173: 355-370. https://doi.org/10.1016/j.ecolmodel.2003.07.010
  38. Yamaji, I., 1984. Illustration of marine plankton of Japan. 3rd ed. Hoikusha Pub. Co., Japan.