DOI QR코드

DOI QR Code

A study of origins and characteristics of metallic elements in PM10 and PM2.5 at a suburban site in Taean, Chungchengnam-do

충청남도 태안 교외대기 PM10, PM2.5의 중금속 농도 특성과 기원 추적연구

  • Sangmin Oh (Environmental Measurement&Analysis Center, Environmental Infrastructure Research Department, National Institute of Environmental Research) ;
  • Suk-Hee Yoon (Environmental Measurement&Analysis Center, Environmental Infrastructure Research Department, National Institute of Environmental Research) ;
  • Jaeseon Park (Monitoring & Analysis Division, Han River Basin Environmental Office, Ministry of Environment) ;
  • Yu-Jung Heo (Environmental Measurement&Analysis Center, Environmental Infrastructure Research Department, National Institute of Environmental Research) ;
  • Soohyung Lee (Environmental Measurement&Analysis Center, Environmental Infrastructure Research Department, National Institute of Environmental Research) ;
  • Eun-Jin Yoo (Environmental Measurement&Analysis Center, Environmental Infrastructure Research Department, National Institute of Environmental Research) ;
  • Min-Seob Kim (Environmental Measurement&Analysis Center, Environmental Infrastructure Research Department, National Institute of Environmental Research)
  • 오상민 (환경측정분석센터, 환경기반연구부, 국립환경과학원) ;
  • 윤숙희 (환경측정분석센터, 환경기반연구부, 국립환경과학원) ;
  • 박재선 (측정분석과, 환경관리국, 한강유역환경청) ;
  • 허유정 (환경측정분석센터, 환경기반연구부, 국립환경과학원) ;
  • 이수형 (환경측정분석센터, 환경기반연구부, 국립환경과학원) ;
  • 유은진 (환경측정분석센터, 환경기반연구부, 국립환경과학원) ;
  • 김민섭 (환경측정분석센터, 환경기반연구부, 국립환경과학원)
  • Received : 2023.07.30
  • Accepted : 2023.09.23
  • Published : 2023.12.31

Abstract

Chungcheongnam-do has various emission sources, including large-scale facilities such as power plants, steel and petrochemical industry complexes, which can lead to the severe PM pollution. Here, we measured concentrations of PM10, PM2.5, and its metallic elements at a suburban site in Taean, Chungcheongnam-do from September 2017 to June 2022. During the measurement period, the average concentrations of PM10 and PM2.5 were 58.6 ㎍/m3 (9.6~379.0 ㎍/m3) and 35.0 ㎍/m3 (6.1~132.2 ㎍/m3), respectively. The concentration of PM10 and PM2.5 showed typical seasonal variation, with higher concentration in winter and lower concentration in summer. When high concentrations of PM2.5 occurred, particulary in winter, the fraction of Zn and Pb components considerably increased, indicating a significant contribution of Zn and Pb to high-PM2.5 concentration. In addition, Zn and Pb exhibited the highest correlation coefficient among all other metallic elements of PM2.5. A backward trajectory cluster analysis and CPF model were performed to examine the origin of PM2.5. The high concentration of PM2.5 was primarily influenced by emissions from industrial complexes located in the northeast and northwest areas.

Keywords

Acknowledgement

이 연구는 국립환경과학원 연구사업 R&D 예산으로 수행되었습니다. (NIER, 2022-01-01-072)

References

  1. Baek, K.-M., Se, Y.-K., Chung, D-H., and Baek, S.-O. (2019). Atmospheric Occurrence and Concentrations of PAHs and Heavy Metals in Pohang, Journal of the Korean Society for Environmental Analysis, 35(5), 533-554. https://doi.org/10.5572/KOSAE.2019.35.5.533
  2. Bhattarai, G., Lee, J. B., Kim, M.-H., Ham, S., So, H.-S., Oh, S., Sim, H.-J., Lee, J.-C., Song, M., and Kook, S.-H. (2020). Maternal exposure to fine particulate matter during pregnancy induces progressive senescence of hematopoietic stem cells under preferential impairment of the bone marrow microenvironment and aids development of myeloproliferative disease, Leukemia, 34, 1481-1484. https://doi.org/10.3390/ijerph14040440.
  3. Booth, B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin, N. (2012). Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability, Nature, 484, 228-232. https://doi.org/10.1016/j.envint.2016.02.003.
  4. Byun, J.-Y., Cho, S.-H., Kim, H.-W., and Han, Y.-J. (2018). Long-term Characteristics of PM2.5 and Its Metallic Components in Chuncheon, Korea, Journal of Korean Society for Atmospheric Environment, 34(3), 406-417. https://doi.org/10.5572/KOSAE.2018.34.3.406
  5. Cao, J., Shen, Z., Chow, J.-C., Qi, G., and Watson, J.-G. (2009). Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China, Particuology, 7(3), 161-168. https://doi.org/10.1016/j.partic.2009.01.009
  6. Cha, Y., Lee, S., and Lee, J. (2019). Measurement of black carbon concentration and comparison with PM10 and PM2.5 concentrations monitored in Chungcheong-Province, Korea. Aerosol and Air Quality Research, 19(3), 541-547.
  7. Cho, B., and Song, M. (2017). Distributions and origins of PM10 in Jeollabuk-do from 2010 to 2015, Journal of Korean Society for Atmospheric Environment, 33(3), 251-264. https://doi.org/10.4209/aaqr.2018.08.0325
  8. Cho, T.-J., Jeong, M.-H., Jeon, J.-M., and Son, B.-S. (2009). A study on the concentration of fine particles and heavy metals in iron works, Journal of Environmental Science International, 18(4), 401-409. https://doi.org/10.5322/JES.2009.18.4.401
  9. Choi, B.-J., and Kim, K.-H. (2003). The metallic composition of airborne particles in seven locations of Seoul city, Korea, ANALYTICAL SCIENCE and TECHNOLOGY, 16(2), 143-151.
  10. Choi, S.-H., Choi, S.-W., Kim, D.-Y., Cha, Y.-W., Park, S.-W., Lee, S.-I., and Yoo, E.-C. (2021). Evaluation of Health Risk from Concentrations of Heavy Metal in PM-10 and PM-2.5 particles at Sasang Industrial Complex of Busan, Korea, Journal of Environmental Analysis, Health and Toxicology, 24(3), 133-148. https://doi.org/10.36278/jeaht.24.3.133
  11. Choudhary, N., Rai, A., Kuniyal, J. C., Srivastava, P., Lata, R., Dutta, M., Ghosh, A., Dey, S., Sarkar, S., Gupta, S., Chaudhary, S., Thakur, I., Bawari, A., Naja, M., Vijayan., Chatterjee, A., Mandal, T.-K., Sharma, S.-K., and Kotnala, R.-K. (2023). Chemical Characterization and Source Apportionment of PM10 Using Receptor Models over the Himalayan Region of India, Atmosphere, 14(5), 880. https://doi.org/10.3390/atmos14050880
  12. Dhaka, S.-K., Longiany, G., Panwar, V., Kumar, V., Malik, S., Rao, A.-S., Singh, N., Dimri, A.-P., Matsumi, Y., Najayama, T., and Hayashida, S. (2022). Trends and Variability of PM2.5 at Different Time Scales over Delhi: Long-term Analysis 2007-2021, Aerosol and Air Quality Research, 22, 220191. https://doi.org/ 10.4209/aaqr.220191
  13. Feng, J., and Yang, W. (2012). Effects of Particulate Air Pollution on Cardiovascular Health: A Population Health Risk Assessment, PLoS ONE, 7(3), e33385. https://doi.org/10.1371/journal.pone.0033385
  14. Ham, J., Lee, H.-J., Cha, J.-W., and Ryoo, S.-B. (2017). Potential source of PM10, PM2.5, and OC and EC in Seoul during spring 2016, Atmosphere, 27(1), 41-54. https://doi.org/10.14191/Atmos.2017.27.1.041
  15. Han, S.-B., Song, S.-K., and Moon, S.-H. (2022). Concentration Characteristics of PM2.5 and the Contributions of Physical and Chemical Processes to its Production during 2019 PM2.5 Episodes in Seoul, Journal of Korean Society for Atmospheric Environment, 38(2), 220-236. https://doi.org/10.5572/KOSAE.2022.38.2.220
  16. Han, X., Li, S., Li, Z., Pang, X., Bao, Y., Shi, J., and Ning, P. (2021). Concentrations, source characteristics, and health risk assessment of toxic heavy metals in PM2.5 in a plateau city (Kunming) in Southwest China, International Journal of Environmental Research and Public Health, 18(21), 11004. https://doi.org/10.3390/ijerph182111004
  17. Huang, Y., Wang, L., Zhang, S., Zhang, M., Wang, J., Cheng, X., Li, T., H, M., and Ni, S. (2020). Source apportionment and health risk assessment of air pollution particles in eastern district of Chengdu, Environmental Geochemistry and Health, 42, 2251-2263. https://doi.org/10.1007/s10653-019-00495-0
  18. Hwang, K.-W., Kim, J., and Kwon, Y.-J. (2021). A Study on the Factors Affecting the Air Environment in Chungnam Province-Focusing on Cheonan, Dangjin, and Seosan, Journal of the Korea Academia-Industrial cooperation Society, 22(5), 118-127. https://doi.org/10.5762/KAIS.2021.22.5.118
  19. Janssen, N.-A.-H., Fischer, P., Marra, M., Ameling, C., and Cassee, F.-R. (2013). Short-term effects of PM2.5, PM10 and PM2.5-10 on daily mortality in the Netherlands, Science of the Total Environment, 463, 20-26. https://doi.org/10.1016/j.scitotenv.2013.05.062
  20. Jeon, B.-I. (2015). Characteristics of the Springtime Weekday/Weekend on Mass and Metallic Elements Concentrations of PM10 and PM2.5 in Busan, Journal of Environmental Science International, 24(6), 777-784. https://doi.org/10.5322/JESI.2015.24.6.777
  21. Jeon, H.-L., Choi, S.-H., Im, J.-Y., Park, H.-J., Hong, E.-J., and Son, B.-S. (2012). Chemical characteristics of heavy metals of PM2.5 in atmosphere, Journal of Environmental Health Sciences, 38(3), 233-240. https://doi.org/10.5668/JEHS.2012.38.3.233
  22. Jeong, Y., and Hwang, I. (2015). Source apportionment of PM2.5 in Gyeongsan using the PMF model, Journal of Korean Society for Atmospheric Environment, 31(6), 508-519. https://doi.org/10.5572/KOSAE.2015.31.6.508
  23. Jo, G., Kim, D., and Song, M. (2018). PM2.5 Concentrations and Chemical Compositions in Jeonju from 2017 to 2018, Journal of Korean Society for Atmospheric Environment, 34(6), 876-888. https://doi.org/10.5572/KOSAE.2018.34.6.876
  24. Jo, K., Ryu, S., Han, M., Choi, S., Shin, M., and Park, J. (2021). Cross-sectional Associations between Particulate Matter (PM2.5) and Depression (PHQ-9) in the Elderly, Journal of Health Informatics and Statistics, 46(2), 163-170. https://doi.org/10.21032/jhis.2021.46.2.163
  25. Ju, S., Yu, G.-H., Park, S., Lee, J., Lee, S., Jee, J., Lee, K., and Lee, M. (2020). Pollution characteristics of PM2.5 measured during fall at a Seosan site in Chungcheng Province, Journal of Korean Society for Atmospheric Environment, 36(3), 329-345. https://doi.org/10.5572/KOSAE.2020.36.3.329
  26. Juda-Rezler, K., Reizer, M., Maciejewska, K., Blaszczak, B., & Klejnowski, K. (2020). Characterization of atmospheric PM2.5 sources at a Central European urban background site. Science of the Total Environment, 713, 136729. https://doi.org/10.1016/j.scitotenv.2020.136729
  27. Jung, J.-Y., Lee, H.-W., Park, S.-H., Lee, J.-I., and Yoon, D.-K. (2023). Health Risk Assessment by Exposure to Heavy Metals in PM2.5 in Ulsan Industrial Complex Area, Journal of Environmental Health Sciences, 49(2), 108-117. https://doi.org/10.5668/JEHS.2023.49.2.108
  28. Kang, B.-W., Kim, M.-J., Baek, K.-M., Seo, Y.-K., Lee, H., Kim, J.-H., Han, J.-S., and Baek, S.-O. (2018). A study on the concentration distribution of airborne heavy metals in major industrial complexes in Korea, Journal of Korean Society for Atmospheric Environment, 34(2), 269-280. https://doi.org/10.5572/KOSAE.2018.34.2.269
  29. Kim, C., Kim, J., Hwang, K., Kim, P., Shin, S., Park, J.-S., Park, S., Lee, G., Lee, J., and Kim, J. (2023). Characteristics Analysis of PM2.5 in Industrial Complex Near Area According to Domestic and Foreign Influences in Case of High Concentration PM2.5 Episode Occurrence, Journal of Korean Society for Atmospheric Environment, 39(1), 62-76. https://doi.org/10.5572/KOSAE.2023.39.1.62
  30. Kim, H.-J., Lee, S.-H., Jung, J.-H., Lee, D.-J., Kim, H.-K., Kim, J.-H., and Yoon, Y.-H. (2020). A Study on the Differences of Fine Dust According to the Pedestrian Characteristics in the Mountain Park, Korean journal of environment and ecology, 30(1), 40.
  31. Kim, K.-J., Lee, S.-H., Hyeon, D.-R., Ko, H.-J., Kim, W.-H., and Kang, C.-H. (2014). Composition comparison of PM10 and PM2.5 fine particulate matter for Asian dust and haze events of 2010-2011 at Gosan site in Jeju Island, ANALYTICAL SCIENCE and TECHNOLOGY, 27(1), 1-10. https://doi.org/10.5806/AST.2014.27.1.1
  32. Kim, S.-M., Kim, M.-C., Kim, K.-S., and Lee, K.-H. (2019). Characteristics of the Concentration-Variations and Air Mass Routes during the High-concentration Events of Particulate Matter in the Jeju Area in 2016, Journal of the Korean Society for Environmental Analysis, 22(2), 61-69.
  33. Kim, S.-T., Kim, O.-K., Kim, B.-U., and Kim, H.-C. (2017). Impact of Emissions from Major Point Sources in Chungcheongnam-do on Surface Fine Particulate Matter Concentration in the Surrounding Area, Journal of Korean Society for Atmospheric Environment, 33(2), 159-173. https://doi.org/10.5572/KOSAE.2017.33.2.159
  34. Korea Environment Corporation (KECO). (2023). Confirmation data by measuring station, https://www.airkorea.or.kr (accessed 25.06.2023).
  35. Korea Meteorological Administration (KMA). http://data.kma.go.kr (accessed 25.06.2023).
  36. Kwon, S.-J., Cha, S.-J., Lee, J.-K., and Park, J. (2020). Evaluation of accumulated particulate matter on roadside tree leaves and its metal content, Journal of Applied Biological Chemistry, 63(2), 161-168. https://doi.org/10.3839/jabc.2020.022
  37. Lee, B.-J., and Park, S.-S. (2019). Temporal and spatial variabilities of concentrations of criteria air pollutants during early summer in 2018 in South Chungcheng Province, Journal of Korean Society for Atmospheric Environment, 35(2),
  38. Lee, B.-J., and Park, S.-S. (2019). Temporal and spatial variabilities of concentrations of criteria air pollutants during early summer in 2018 in South Chungcheong Province, Journal of Korean Society for Atmospheric Environment, 35(2), 265-281. https://doi.org/10.5572/KOSAE.2019.35.2.265
  39. Lee, D.-E., Kim, W.-H., Ko, H.-J., Oh, Y.-S., and Kang, C.-H. (2013). Chemical Composition Characteristics of Size-fractionated Particles during Heavy Asian Dust Event in Spring, 2010, Journal of Korean Society for Atmospheric Environment, 29(3), 325-337. https://doi.org/10.5572/KOSAE.2013.29.3.325
  40. Lee, H.-J., Jeong, Y., Kim, S.-T., and Lee, W.-S. (2018). Atmospheric Circulation Patterns Associated with Particulate Matter over South Korea and Their Future Projection, Journal of Climate Change Research, 9(4), 423-433. https://doi.org/10.15531/KSCCR.2018.9.4.423
  41. Lee, H.-W., Lee, S.-H., Jeon, J.-I., Lee, J.-I., and Lee, C.-M. (2022). A Study on the Characteristics of Ion, Carbon, and Elemental Components in PM2.5 at Industrial Complexes in Ansan and Siheung, Journal of Environmental Health Sciences, 48(2), 66-74. https://doi.org/10.5668/JEHS.2022.48.2.66
  42. Lee, S.-H., Lee, K.-S., Yoon, S.-H., Yang, Y.-C., Park, J.-Y., Bae, S.-J., and Lee, D.-H. (2019). Characteristics of PM2.5 in Gwangju-Evaluated by Factor Analysis, Journal of Environmental Science International, 28(4), 413-422. https://doi.org/10.5322/JESI.2019.28.4.413
  43. Lee, S., Hong, H.-S., Kim, C., Hwang, E., Yoon, S., Lee, S., Noh, S., and Kim, J. (2021). Characteristic analysis of urban air pollution of northwest cities in ChungNam, Journal of Korean Society for Atmospheric Environment, 37(4), 561-577. https://doi.org/10.5572/KOSAE.2021.37.4.561
  44. Li, L., Girguis, M., Lurmann, F., Pavlovic, N., McClure, C., Franklin, M., Wu, J., Oman, L., Breton, C., Gilliland, F., and Habre, R. (2020). Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire smoke, Environment international, 145, 106143. https://doi.org/10.1016/j.envint.2020.106143
  45. Lin, Y.-C., Hsu, S.-C., Lin, S.-H., and Huang, Y.-T. (2020). Metallic elements emitted from industrial sources in Taiwan: Implications for source identification using airborne PM, Atmospheric Pollution Research, 11(4), 766-775. https://doi.org/10.1016/j.apr.2020.01.005
  46. Liu, C.-M., Young, C.-Y., and Lee, Y.-C. (2006). Influence of Asian dust storms on air quality in Taiwan, Science of the Total Environment, 368(2-3), 884-897. https://doi.org/10.1016/j.scitotenv.2006.03.039
  47. Ma, Y., Zhao, H., and Liu, Q. (2022). Characteristics of PM2.5 and PM10 pollution in the urban agglomeration of Central Liaoning, Urban Climate, 43, 101170. https://doi.org/10.1016/j.uclim.2022.101170
  48. Ministry of the Interior and Safety (MIS). (2021). Cleansys. URL: http://apis.data.go.kr/B552584/cleansys
  49. Myhre, G., Shindell, D., and Breon, F.-M. (2022). Anthropogenic and natural radiative forcing, in IPCC, Climate Change 2013: The Physical Science Basis, Working Group I Contribution to the IPCC Fifth Assessment Report, https://www.ipcc.ch/report/ar5/wg1/anthropogenic-and-natural-radiative-forcing/, accessed on 1 April 2022.
  50. Nishita-Hara, C., Hirabayashi, M., Hara, K., Yamazaki, A., and Hayashi, M. (2019). Dithiothreitol-measured oxidative potential of size-segregated particulate matter in Fukuoka, Japan: Effects of Asian dust events, GeoHealth, 3(6), 160-173. https://doi.org/10.1029/2019GH000189
  51. Oh, S.-W. (2007). Concentrations of Atmospheric Fine Particles Measured during 2005 in Chungnam, Korea, Journal of Korean Society for Atmospheric Environment, 23(1), 132-140. https://doi.org/10.1029/2019GH000189
  52. Oh, Y.-J., Han, Y.-D., Kim, Y.-J., Jung, S.-H., Jung, W.-H., Im, J.-Y., Park, M.-G., and Son, B.-S. (2019). Heavy metals exposure and health risk assessment of PM10 particles in indoor air in industrial area, Journal of Odor and Indoor Environment, 18(1), 18-27. https://doi.org/10.15250/joie.2019.18.1.18
  53. Park, G.-H., Kwak, J., Jeong, J.-W., and Yoo, E.-C. (2014). The research on the estimation of source apportionment of PM2.5 in Busan, The Annual Report of Busan Metropolitan city Institute of Health and Environment, 24(1), 174-184.
  54. Park, H.-Y., Park, H.-S., Lee, B.-R., Choi, H.-J., Kim, H.-R., Lim, H.-J., Park, C.-O., Kim, I.-S., Park, G.-H., Jeon, D.-Y., and Bae, M.-S. (2022). Source assessment of PM-2.5 in the residential areas of Gwangyang Bay using source apportionment model (II), Journal of Environment Analysis, Health and Toxicology, 25(1), 18-32. https://doi.org/10.36278/jeaht.25.1.18
  55. Park, H., Kim, M.-S., Park, J., Kim, M.-J., Kim, J.-Y., Shin, H., Choi, J.-W. (2017). Tracing the source of PM2.5 using chemical composition and stable isotope analysis, Journal of the Korean Society for Environmental Analysis, 20(4), 266-278.
  56. Park, J., Ryoo, J., Jee, J., and Song, M. (2020). Origins and distributions of atmospheric ammonia in Jeonju during 2019~2020, Journal of Korean Society for Atmospheric Environment, 36(2), 262-274. https://doi.org/10.5572/KOSAE.2020.36.2.262
  57. Park, S. (2019). Change in mass size distributions of ambient aerosol particles during Asian Dust storm event in late fall at an urban site of Gwangju, Journal of Korean Society for Atmospheric Environment, 35(4), 502-515. https://doi.org/10.5572/KOSAE.2019.35.4.502
  58. Park, S., and Shin, H. (2017). Analysis of the Factors Influencing PM2.5 in Korea: Focusing on Seasonal Factors, Journal of Environmental Policy and Administration, 25(1), 227-248. https://doi.org/10.15301/jepa.2017.25.1.227
  59. Samek, L., Styszko, K., Stegowski, Z., Zimnoch, M., Skiba, A., Turek-Fijak, A., Gorczyca, Z., Furman, P., Kasper-Giebl, A., and Rozanski, K. (2021). Comparison of PM10 sources at traffic and urban background sites based on elemental, chemical and isotopic composition: Case study from Krakow, Southern Poland, Atmosphere, 12(10), 1364. https://doi.org/10.3390/atmos12101364
  60. Samek, L., Turek-Fijak, A., Skiba, A., Furman, P., Styszko, K., Furman, L., & Stegowski, Z. (2020). Complex characterization of fine fraction and source contribution to PM2.5 mass at an urban area in Central Europe, Atmosphere, 11(10), 1085. https://doi.org/10.3390/atmos12101364
  61. Shim, K., Kim, M.-H., Lee, H.-J., Nishizawa, T., Shimizu, A., Kobayashi, H., Kim, C.-H., and Kim, S.-W. (2022). Exacerbation of PM2.5 concentration due to unpredictable weak Asian dust storm: A case study of an extraordinarily long-lasting spring haze episode in Seoul, Korea, Atmospheric Environment, 287, 119261. https://doi.org/10.1016/j.atmosenv.2022.119261
  62. Son, S.-C., Park, S., Bae, M., and Kim, S. (2020). A study on characteristics of high Pm2.5 pollution observed around large-scale stationary sources in Chungcheongnam-do Province, Journal of Korean Society for Atmospheric Environment, 36(5), 669-687. https://doi.org/10.5572/KOSAE.2020.36.5.669
  63. Song, G.-J., Moon, Y.-H., Joo, J.-H., Lee, A.-Y., and Lee, J.-B. (2018). Distribution of Hazardous Heavy Metal in TSP, PM10 and PM2.5 Emitted from Coal-fired Power Plants, Journal of the Korean Society for Environmental Analysis, 21(3), 172-180.
  64. Song, J.-M., Bu, J.-O., Yang, S.-H., Lee, J.-Y., Kim, W.-H., and Kang, C.-H. (2016). Influences of Asian Dust, Haze, and Mist Events on Chemical Compositions of Fine Particulate Matters at Gosan Site, Jeju Island in 2014, Journal of Korean Society for Atmospheric Environment, 32(1), 67-81. https://doi.org/10.5572/KOSAE.2016.32.1.067
  65. Sung, M.-Y., Park, J.-S., Kim, H.-J., Jeon, H.-E., Hong, Y.-D., and Hong, J.-H. (2015). The characteristics of element components in PM2.5 in Seoul and Daejeon, Journal of the Korean Society for Environmental Analysis, 18(1), 49-58.
  66. United Nations Economic Commission for Europe (UNECE). (1995). Heavy metal emission-Long range transboundary air pollution.
  67. Won, S.-R., Choi, Y.-J., Kim, A., Choi, S.-H., and Ghim, Y.-S. (2010). Ion concentrations of particulate matter in Yongin in spring and fall, Journal of Korean Society for Atmospheric Environment, 26(3), 265-275. https://doi.org/10.5572/KOSAE.2010.26.3.265
  68. Wu, P.-C., and Huang, K.-F. (2021). Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios, Scientific Reports, 11(1), 7593. https://doi.org/10.1038/s41598-021-87051-y
  69. Wu, R., Zhou, X., Wang, L., Wang, Z., Zhou, Y., Zhang, J., and Wang, W. (2017). PM2.5 characteristics in Qingdao and across coastal cities in China, Atmosphere, 8(4), 77. https://doi.org/10.3390/atmos8040077
  70. Xu, G., Jiao, L., Zhang, B., Zhao, S., Yuan, M., Gu, Y., ... & Tang, X. (2017). Spatial and temporal variability of the PM2.5/PM10 ratio in Wuhan, Central China, Aerosol and Air Quality Research, 17(3), 741-751. https://doi.org/10.3389/fenvs.2021.692440
  71. Yatkin, S., and Bayram, A. (2008). Source apportionment of PM10 and PM2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey, Science of the Total Environment, 390(1), 109-123. https://doi.org/10.1016/j.scitotenv.2007.08.059
  72. Yu, G.-H., Cho, S.-Y., Bae, M.-S., Lee, K.-H., and Park, S.-S. (2015). Investigation of PM 2.5 pollution episodes in Gwangju, Journal of Korean Society for Atmospheric Environment, 31(3), 269-286. https://doi.org/10.5572/KOSAE.2015.31.3.269
  73. Zhang, F., Wang, Z.-W., Cheng, H.-R., Lv, X.-P., Gong, W., Wang, X.-M., and Zhang, G. (2015). Seasonal variations and chemical characteristics of PM2.5 in Wuhan, central China, Science of the Total Environment, 518, 97-105. https://doi.org/10.1016/j.scitotenv.2015.02.054
  74. Zhao, S., Tian, H., Luo, L., Liu, H., Wu, B., Liu, S., Bai, X., Liu, W., Liu, X., Wu, Y., Lin, S., Guo, Z., Lv, Y., and Xue, Y. (2021). Temporal variation characteristics and source apportionment of metal elements in PM2.5 in urban Beijing during 2018-2019, Environmental Pollution, 268, 115856. https://doi.org/10.1016/j.envpol.2020.115856
  75. Zhou, X., Cao, Z., Ma, Y., Wang, L., Wu, R., and Wang, W. (2016). Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: potential implications for the revised particulate standard, Chemosphere, 144, 518-526. https://doi.org/10.1016/j.chemosphere.2015.09.003