• Title/Summary/Keyword: seasonal cycle

Search Result 256, Processing Time 0.034 seconds

Sulfur Cycle in the Rehabilitated Forest Catchment in Tanakami Mountain, Kansai District, Japan (일본 칸사이 지방 타나카미 산지의 황폐지 복구 산림유역 내 황(黃)순환에 관한 연구)

  • Kim, Su-Jin;Ohte, Nobuhito;Park, Jong-Kwan
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.4
    • /
    • pp.429-446
    • /
    • 2009
  • To understand the sulfur flux and cycle in the forest catchment, the hydrological processes and chemical variation of soil solution, groundwater and stream water were analyzed at the Matsuzawa catchment located in the Kiryu Experimental Basin, Shiga Prefecture, central Japan. Unsaturated soil layer at the upper slope of catchment was the source area of ${SO_4}^{2-}$, and deep soil layer and groundwater were the sink zone of ${SO_4}^{2-}$. The vertical distribution of ${SO_4}^{2-}$ concentrations in groundwater affected seasonal variation of ${SO_4}^{2-}$ concentrations in stream water, as groundwater level changed. It is reasonable to assume that each hydrological processes in the forest catchment play an important roles in the retention and discharge of ${SO_4}^{2-}$.

Drought over Seoul and Its Association with Solar Cycles

  • Park, Jong-Hyeok;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2013
  • We have investigated drought periodicities occurred in Seoul to find out any indication of relationship between drought in Korea and solar activities. It is motivated, in view of solar-terrestrial connection, to search for an example of extreme weather condition controlled by solar activity. The periodicity of drought in Seoul has been re-examined using the wavelet transform technique as the consensus is not achieved yet. The reason we have chosen Seoul is because daily precipitation was recorded for longer than 200 years, which meets our requirement that analyses of drought frequency demand long-term historical data to ensure reliable estimates. We have examined three types of time series of the Effective Drought Index (EDI). We have directly analyzed EDI time series in the first place. And we have constructed and analyzed time series of histogram in which the number of days whose EDI is less than -1.5 for a given month of the year is given as a function of time, and one in which the number of occasions where EDI values of three consecutive days are all less than -1.5 is given as a function of time. All the time series data sets we analyzed are periodic. Apart from the annual cycle due to seasonal variations, periodicities shorter than the 11 year sunspot cycle, ~ 3, ~ 4, ~ 6 years, have been confirmed. Periodicities to which theses short periodicities (shorter than Hale period) may be corresponding are not yet known. Longer periodicities possibly related to Gleissberg cycles, ~ 55, ~ 120 years, can be also seen. However, periodicity comparable to the 11 year solar cycle seems absent in both EDI and the constructed data sets.

Relationship of root biomass and soil respiration in a stand of deciduous broadleaved trees-a case study in a maple tree

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.155-162
    • /
    • 2018
  • Background: In ecosystem carbon cycle studies, distinguishing between $CO_2$ emitted by roots and by microbes remains very difficult because it is mixed before being released into the atmosphere. Currently, no method for quantifying root and microbial respiration is effective. Therefore, this study investigated the relationship between soil respiration and underground root biomass at varying distances from the tree and tested possibilities for measuring root and microbial respiration. Methods: Soil respiration was measured by the closed chamber method, in which acrylic collars were placed at regular intervals from the tree base. Measurements were made irregularly during one season, including high temperatures in summer and low temperatures in autumn; the soil's temperature and moisture content were also collected. After measurements, roots of each plot were collected, and their dry matter biomass measured to analyze relationships between root biomass and soil respiration. Results: Apart from root biomass, which affects soil's temperature and moisture, no other factors affecting soil respiration showed significant differences between measuring points. At each point, soil respiration showed clear seasonal variations and high exponential correlation with increasing soil temperatures. The root biomass decreased exponentially with increasing distance from the tree. The rate of soil respiration was also highly correlated exponentially with root biomass. Based on these results, the average rate of root respiration in the soil was estimated to be 34.4% (26.6~43.1%). Conclusions: In this study, attempts were made to differentiate the root respiration rate by analyzing the distribution of root biomass and resulting changes in soil respiration. As distance from the tree increased, root biomass and soil respiration values were shown to strongly decrease exponentially. Root biomass increased logarithmically with increases in soil respiration. In addition, soil respiration and underground root biomass were logarithmically related; the calculated root-breathing rate was around 44%. This study method is applicable for determining root and microbial respiration in forest ecosystem carbon cycle research. However, more data should be collected on the distribution of root biomass and the correlated soil respiration.

Seasonal Variations of Sedimentary Processes on Mesotidal Beach in Imjado, Southwestern Coast of Korea (한반도 서해남부 임자도 해빈 퇴적작용의 계절적 변화)

  • 류상옥;장진호;조주환;문병찬
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.83-92
    • /
    • 2004
  • A continuous monitoring of textural characteristics of surface sediments, sedimentation rates and beach profile was carried out to investigate the seasonal variations of sedimentary processes in the Imjado beach, southwestern coast of Korea for two years. The beach profiles consist of steep beach face and relatively flat middle and low tide beaches. The slope of the beach face increases in summer and decreases in winter, in good accordance with the standard beach cycle. Ridge and runnel systems are well developed in the middle and low tide beaches during the summer, but these structures are replaced by mega-ripples during the winter. The sediments are fining southward as well as landward. The mean grain-size tends to be increasingly coarser during seasons of autumn and winter on the north beach and during seasons of winter and spring on the south one. In addition, the sediments are eroded on the north beach and accumulated on the south one as a whole. These are probably due to southward transportation of the sediments as long-shore current (NE-SW) runs around the coastal line of the beach. However, the seasonal variations in accumulation rates are very complex and irregular. It is considered that the Imjado beach represents in non-equilibrium state, as a result of coastal and submarine topographic changes by artificial agents and sea-level uprising associated with global warming.

Summer Patterns and Diel Variations of Fish Movements Using Fish Trap Sampling Technique in the Juksan Weir (죽산보의 어도에서 트랩 샘플링 기법을 이용한 하절기, 일주기별 어류 이동성 평가)

  • Han, Jeong-Ho;Ko, Dae-Geun;Lim, Byung Jin;Park, Jong-Hwan;An, Kwang-Guk
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.6
    • /
    • pp.879-891
    • /
    • 2012
  • The objective of this study was to evaluate seasonal patterns and diel variations of fish movements in the Juksan Weir which was constructed in 2010 at the down-stream of Yeongsan-River watershed. For this study, we monitored day-and-night movement(24 Hr cycle) and seasonal fish migration(June ~ August) patterns in 2011 along with species compositions and abundances depending on the locations of the traps within the fishway. Total number of species sampled was 14 and the total number of individuals was 1,263 with only the size-fractions(as total length) of the fish < 20 cm during the study. Seasonal analysis of fish movement in the fish way showed that highest frequency in the movement occurred in June - July, which is closely associated with a spawning peak season. The most dominant species using the fishway was Squalidus chankaensis tsuchigae, and this species turned out to be 26.9% of the total in the use rate of fishway. Daily monitoring of fish movements showed that most frequent movements occurred between 18:00 PM and 21:00 PM when the fish have a feeding time generally. The migratory fish were not found in the fishway during the study. Mean current velocity during the study $0.42{\pm}0.02ms^{-1}$(n = 42), and there were no significant statistical differences(p > 0.05) among the daily and monthly velocities in the fishway. The use rate of fish passage, in terms of fish species, was 48%, compared with total sampling of fish species(29 species) at the down-river regions during the same period, indicating a low use rate. Further continuous long-term monitoring should be conducted to evaluate the impacts of the weir construction in the river.

Soil CO2 Efflux and Leaf-Litter Decomposition of Quercus variabilis and Pinus densiflora Stands in the Southern Region of Korean Peninsular

  • Kim, Sung Bin;Jung, Nam Chul;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.2
    • /
    • pp.183-188
    • /
    • 2009
  • It is necessary to determine the amount of carbon dioxide ($CO_2$) absorbed by plants and released from forest floor into atmosphere, to gain a better understanding how forests participate in the global carbon cycle. Soil $CO_2$ efflux, litter production, and decomposition were investigated in Q. variabilis and P. densiflora stands in the vicinity of Gwangju, Chonnam province. Soil $CO_2$ efflux was measured using Infrared Gas Analyzer (IRGA) at midday of the 10th day at every month over 12-month period, to quantify seasonal and annual budgets of soil $CO_2$ efflux. Soil temperature and soil moisture were measured at the same time. Seasonal soil $CO_2$ efflux in Q. variabilis and P. densiflora were the highest in summer season. In August, maximum soil $CO_2$ efflux in Q. variabilis and P. densiflora was 7.49, $4.61CO_2{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. Annual $CO_2$ efflux in each stand was 1.77, $1.67CO_2kg{\cdot}m^{-2}$ respectively. Soil $CO_2$ efflux increased exponentially with soil temperature and related strongly in Q. variabilis ($r^2$=0.96), and in P. densiflora ($r^2$=0.91). Litter production continued throughout the year, but showed a peak on November and December. Annual litter production in the Q. variabilis and P. densiflora stands were $613.7gdw{\cdot}m^{-2}{\cdot}yr^{-1}$ and $550.5gdw{\cdot}m^{-2}{\cdot}yr^{-1}$.$yr^{-1}$, respectively. After 1 year, % remaining mass of Q. variabilis and P. densiflora litter was 48.2, 57.1%, respectively. The soil $CO_2$ efflux rates in this study showed clear seasonal variations. In addition, the temporal variation in the $CO_2$ efflux rates was closely related to the soil temperature fluctuation rather than to variations in the soil moisture content. The range of fluctuation of soil $CO_2$ efflux and litter decomposition rate showed similar seasonal changes. The range of fluctuation of soil $CO_2$ efflux and litter decomposition rate was higher during summer and autumn than spring and winter.

Net Radiation and Soil Heat Fluxes Measured on Coastal Wetland Covered with Reeds (갈대 서식 연안습지에서의 순복사와 토양열 플럭스)

  • Kim, Hee-Jong;Kim, Dong-Su;Yoon, Ill-Hee;Lee, Dong-In;Kwon, Byung-Hyuk
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • In the coastal wetland the mud is consist of fine particles, which means that it is characterized by small gap, and heat transfer is obstructed since moisture is found between the gaps. The relationship between net radiation ($R_N$) and soil heat flux($H_G$) shows a counterclockwise hysteresis cycle, which refer to a time lag behind in the maximal soil heat fluxes. The albedo is independent of seasonal variation of the vegetation canopy which plays very important roles to store and control the heat in the atmospheric surface layer.

The Transparency Variation According to Tidal and Seasonal Variation in Deukryang Bay , 1995 and 1996 (득량만의 조석주기 및 계절변동에 따른 투명도의 변동특성)

  • Lee, Byung-Gul;Cho, Kyu-Dae;Choi, Yong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.386-394
    • /
    • 1996
  • The temporal variations of the transparency with water temperature, salinity and density during spring-neap tidal cycle of spring, summer, autumn and winter time were investigated at 34 stations using observation data in Deukryang Bay, Korea, in 1995. It was found that the transparency was depended on spread of tidal currents and vertical stratification of water. The depth of transparency during neap tide was deeper than that of spring tide. The value of transparency in summer was the largest among four seasons. We concluded that the vertical stratification intensity of water mass and vertical distribution of transparency.

  • PDF

Nitrate and Pesticide Losses Under Various Cropping Management Systems

  • Kent Mitchell, J.;Felsot, Allan;Hirschi, Michael C.;Lesikar, Bruce J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1003-1012
    • /
    • 1993
  • The objective of this study was to evaluate the effectiveness of tillage and cropping management systems in reducing the movement of nitrate and pesticides in surface and sub-surface flow. Nitrate and pesticides in runoff and sub-surface tile flow have been monitored for two years from fields with various tillage and cropping management practices. Samples have also been obtained along the mainstream of the watershed. Concentrations of nitrate an pesticides differed little among specific sampling locations along the river, but they definitely followed a seasonal cycle. Nitrate concentrations from the tile drains varied considerably between fields depending upon the cropping management systems used, with concentrations varying seasonally as inthe river.

  • PDF

Experimental Study on Characteristics of Two-Phase Flow through a Bypass Orifice Expansion Device

  • Choi, Jong-Min;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.11-19
    • /
    • 2001
  • To establish optimum cycle of the inverter-driven heat pump with a variation of frequency, the bypass orifice, which was a short tube haying a bypass hole in the middle, was designed and tested. Flow characteristics of the bypass orifice were measured as a function of orifice geometry and operating conditions. Flow trends with respect to frequency were compared with those of short tube orifices and capillary tubes. Generally, the bypass orifice showed the best flow trends among them. and it would enhance the seasonal energy efficiency ratio of an inverter heat pump system, Based on experimental data, a semi-empirical flow model was developed to predict mass flow rate through bypass orifices. The maximum difference between measured data and model`s prediction was within $\pm$5%.

  • PDF