Sulfur Cycle in the Rehabilitated Forest Catchment in Tanakami Mountain, Kansai District, Japan

일본 칸사이 지방 타나카미 산지의 황폐지 복구 산림유역 내 황(黃)순환에 관한 연구

  • Kim, Su-Jin (Global Environment Lab., Yonsei Univ.) ;
  • Ohte, Nobuhito (Graduate School of Agriculture and Life Sciences, The Univ. of Tokyo) ;
  • Park, Jong-Kwan (Dept. of Geography, College of Science, Konkuk Univ.)
  • Published : 2009.09.30

Abstract

To understand the sulfur flux and cycle in the forest catchment, the hydrological processes and chemical variation of soil solution, groundwater and stream water were analyzed at the Matsuzawa catchment located in the Kiryu Experimental Basin, Shiga Prefecture, central Japan. Unsaturated soil layer at the upper slope of catchment was the source area of ${SO_4}^{2-}$, and deep soil layer and groundwater were the sink zone of ${SO_4}^{2-}$. The vertical distribution of ${SO_4}^{2-}$ concentrations in groundwater affected seasonal variation of ${SO_4}^{2-}$ concentrations in stream water, as groundwater level changed. It is reasonable to assume that each hydrological processes in the forest catchment play an important roles in the retention and discharge of ${SO_4}^{2-}$.

본 연구는 일본 시가현(자하현(滋賀懸)) 기류(동생(桐生))수문시험지의 1차곡 소유역인 마쯔자와 유역에서 유역 내 수문과정과 토양수, 지하수, 계류수의 수질 등의 관측을 실시, 산림유역 내 황(黃) 플럭스를 수문지형학적 관점에서 해석하여 온대 산림유역 내의 황 순환 과정을 밝히고자 실시하였다. 유역 상부 교란 구역의 토양은 ${SO_4}^{2-}$의 공급원으로 작용하고 있었으며, 사면 수문과정을 통해 유역 중부와 하부의 심층토양 및 지하수대에 ${SO_4}^{2-}$가 저장되고 있었다. 계류수의 ${SO_4}^{2-}$ 농도는 지하수위 변동과 음의 상관을 나타내고 있는 바, 이는 심층지하수에 저장된 ${SO_4}^{2-}$가 가뭄 등의 저수위시 혹은 평수위시에 유출되고 있음을 의미한다. 본 연구의 결과로부터 산림유역 내 각 수문과정이 ${SO_4}^{2-}$의 저장과 유출에 중요한 역할을 하고 있다는 것이 정량적으로 밝혀졌다.

Keywords

References

  1. 김수진,정용호,김경하,유재윤,정창기,전재홍, 2005,'산림유역내 강우 발생시 계류수질변화와 지중유출수의 기여도,' 한국농림기상학회지, 7(1), 51-56
  2. 김수진,정용호,김경하,정창기,전재홍,유재윤, 2004,'황폐복고지의 강우유출이 계류수의 전기전도도 및 주요 음이온의 단기변화에 미치는 영향,' 한국임학회지, 93(7), 464-470
  3. 박종관,조경민,양해근,마루이 아츠나오, 2006, '호우시 구릉지 완사면에 발달된'U자골'곡두부에서의 지중수 거동,' 대한지리학회지, 41(6), 670-681
  4. 유영한,김준호,문형태,이창석, 2002, '산림 소유역 생태계에서 질소와 황의 유입량, 유출량과 물질수지,' 한국생태학회지, 25(3), 189-195
  5. 이승우,박관수,이충화,김은영, 2004, '황산이온의 흡착에 관여하는 산림토양의 물리화학적 특성,' 한국토양비료학회지, 37(6), 371-377
  6. 尾保手朋子, 2003,' 森林における粒子物質と微量ガスの乾性沈着に關する硏究,'京都大學博士學位論文
  7. Allan, C. J., Roulet, N. T., and Hill, A. R., 1993, The biogeochemistry of pristine headwater Precambrian shield watersheds: an analysis of material transport within a heterogeneous landscape, Biogeochemistry, 22, 37-79 https://doi.org/10.1007/BF00002756
  8. Band, L. E., Tague, C. L., Groffman, P., and Belt, K., 2001, Forest ecosystem processes at the watershed scale: hydrological and ecological controls of nitrogen export, Hydrological Processes, 15, 2013-2028 https://doi.org/10.1002/hyp.253
  9. Blank, L. W., Roberts, T. M., and Skeffington, R. A.,1988, New perspectives on forest decline, Nature, 336, 27-30 https://doi.org/10.1038/336027a0
  10. Campbell, G. S., 1985, Soil Physics with Basic, Transport Models for Soil-Plant Systems, Elsevier, 150pp
  11. Galloway, J. N., 1989, Atmospheric acidification:projections for the future, Ambio, 18, 161-166
  12. Galloway, J. N., 2001, Acidification of the world: natural and anthropogenic, Water, Air, and Soil Pollution, 130, 17-24 https://doi.org/10.1023/A:1012272431583
  13. Hallett, R. A. and Hornbeck, J. W., 1997, Foliar and soil nutrient relationships in red oak and white pine forests, Canadian Journal of Forest Research, 27, 1233-1244 https://doi.org/10.1139/x97-026
  14. Hobara, H., Tokuchi, N., Ohte, N., Koba, K., Katsuyama, M., Kim, S. J., and Nakanishi, A., 2001, Mechanism of nitrate loss from a forested catchment following a small-scale, natural disturbance, Canadian Journal of Forest Research, 31, 1326-1335 https://doi.org/10.1139/cjfr-31-8-1326
  15. Innes, J. L. and Boswell, R. C., 1990, Reliability, presentation, and relationships among data from inventoried of forest condition, Canadian Journal of Forest Research, 20, 790-799 https://doi.org/10.1139/x90-104
  16. Johnson, A. H., Friedland, A. J., Miller, E. K., and Siccama, T. G., 1994, Acid rain and soils of the Adirondacks. Ⅲ. Rates of soil acidification in a montane spruse-fir forest at Whiteface Mountain, New York, Canadian Journal of Forest Research, 24, 663-669 https://doi.org/10.1139/x94-089
  17. Johnson, D. W., 1984, Sulfur cycling in forests, Biogeochemistry, 1, 29-43 https://doi.org/10.1007/BF02181119
  18. Johnson, D. W. and Mitchell, M. J., 1998, Responses of forest ecosystems to changing sulfur inputs, in Maynard, D. G.(ed.), Sulfur in the Environment, 219-262, Marcel Dekker, INC., NewYork
  19. Kabeya, N., Katsuyama, M., Kawasaki, M., Ohte, N., and Sugimoto, A., 2007, Estimation of mean residence times of subsurface waters using seasonal variation in deuterium excess in a small headwater catchment in Japan, Hydrological Processes, 21, 308-322 https://doi.org/10.1002/hyp.6231
  20. Kim, J. S., 1990, Variations of Soil Moisture and Groundwater Table in a Small Catchment, Ph.D. Dissertation, Kyoto University, Japan
  21. Kim, S. J., 2003, Hydro-biogeochemical Study on the Sulfur Dynamics in a Temperature Forest Catchment, Ph. D. Dissertation. Kyoto University, Japan
  22. Kim, S. J., Ohte, N., Kawasaki, M., Katsuyama, M.,Tokuchi, N., and Hobara, S., 2003, Interactive responses of dissolved sulfate and nitrate to disturbance associated with pine wilt disease in a temperate forest, Soil Science and Plant Nutrition, 49, 539-550 https://doi.org/10.1080/00380768.2003.10410043
  23. Kishi, Y. 1995, The Pind Wood Nematode and the Japanese pine Sawyer, Thomas Co. Ltd., 302pp
  24. Kosugi, K., 1994, Three-parameter lognormal distribution model for soil water retain, Water Resources Research, 30, 891-901 https://doi.org/10.1029/93WR02931
  25. Kosugi, K., 1996, Lognormal distribution model of unsaturated soil hydraulic properties, Water Resources Research, 32, 2697-2703 https://doi.org/10.1029/96WR01776
  26. Likens, G. E., Driscoll, C. T., Buso, D. C., Mitchell, M. J., Lovett, G. M., Bailey, S. W., Siccama, T. G., Reiners, W. A., and Alewell, C., 2002, The biogeochemistry of sulfur at Hubbard Brook, Biogeochemistry, 60, 235-316 https://doi.org/10.1023/A:1020972100496
  27. Ohte, N., Tokuchi, N., and Suzuki, M., 1995, Biogeochemical influences on the determination of water chemistry in a temperate forest basin:Factors determining the pH value, Water Resources Research, 31, 2823-2834 https://doi.org/10.1029/95WR02041
  28. Ohte, N., Tokuchi, N., Katsuyama, M., Hobara, S.,Asano, Y., and Koba, K., 2003, Episodic increases in nitrate concentrations in streamwater due to the partial dieback of a pine forest in Japan: runoff generation processes control seasonality, Hydrological Processes, 17, 237-249 https://doi.org/10.1002/hyp.1121
  29. Oren, R., Werk, K. S., Schulze, E. D., Meyer, J., Schneider, B. U., and Schramel, P., 1988, Performance of two Picea abies(L.) Karst. Stands at different stages of decline, Oecologia, 77, 151-162 https://doi.org/10.1007/BF00379181
  30. Schlesinger, W. H., 1991, Biogeochemistry: An Analysis of Global change, Academic Press, 443pp
  31. Schulze, E. D., 1989, Air pollution and forest decline in a spruce (Picea abies) forest, Science, 244, 776-783 https://doi.org/10.1126/science.244.4906.776
  32. Streets, D. G., Tsai, N. Y., Akimoto, H., and Oka, K., 2000, Sulfur dioxide emissions in Asia in the period 1985-1997, Atmospheric Environment, 34, 4413-4424 https://doi.org/10.1016/S1352-2310(00)00187-4
  33. Tokuchi, N., Ohte, N., Hobara, S., Kim, S. J., and Katsuyama, M., 2004, Changes in biogeochemical cycling following forest defoliation by pine wilt disease in Kiryu experimental catchment in Japan, Hydrological Processes, 18, 2727-2736. DOI: 10.1002/hyp.5578
  34. Yu, J. -Y., Park, Y., Mielke, R. E., and Coleman, M. X., 2007, Sulfur and oxygen isotopic compositions of the dissolved sulphate in the meteoric water in Chuncheon, Korea, Geoscience Journal, 11, 357-367 https://doi.org/10.1007/BF02857051
  35. http://www.asiaflux.net