• 제목/요약/키워드: seamless handover

Search Result 173, Processing Time 0.031 seconds

Enhanced Mobility Management Framework for Future Generation Networks (차세대 이동통신 네트워크를 위한 향상된 이동성 관리 프레임워크)

  • Kim, Moon;Moon, Tae-Wook;Cho, Sung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.710-720
    • /
    • 2009
  • The Future Generation Networks(FGNs) are proposed to integrate various heterogeneous access technologies, and further expected to support both vertical and seamless handovers. In this motivation, the IEEE 802.21 specifies Media Independent Handover(Mlli) services to enhance the mobile user experience by optimizing handovers between heterogeneous access networks. Additionally, Fast handover for MIPv6(FM1Pv6) is introduced to provide transparent host mobility and to improve handover performance by reducing handover delay as well. This paper focuses on the coordination of FMIPv6 and MIH, and introduces an enhanced mobility management framework suited for FGN. This novel framework replaces handover signaling messages used in wireless networks with novel MIH messages and local primitives. Moreover, Serving Access Router(SAR) performs most of handover processes instead of Mobile Node(MN). Therefore, the proposed mobility management framework reduces handover latency, packet loss, and signaling overhead significantly. We further evaluate the performance of the proposed framework by using both numerical analysis and network simulations.

A Soft Handover Scheme Between UMTS and WLAN (UMTS와 WLAN 사이의 소프트 핸드오버 방안)

  • Seo, Won-Kyeong;Lee, Kang-Won;Cho, You-Ze
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.268-274
    • /
    • 2008
  • With the advances in wireless communication technologies, mobile users require to get seamless services anywhere and anytime. To relize these demands, network interworking and vertical handover are necessary between heterogeneous wireless access technologies with multi-interface mobile station. A lot of organizations are doing research on the network integration schemes based on loosely and tightly integrated architectures, and research on vertical handover schemes mainly based on Mobile IP in loosely integrated environments. But actually, the tightly integrated scheme can support more faster vertical handover because heterogeneous access networks are combined tightly. However, vertical handover schemes in tightly integrated environments are conceptually proposed without any detail signaling procedures. Therefore, this paper defines a tightly integrated architecture between UMTS and WLAN, and proposes a soft vertical handover signaling procedure. The proposed soft vertical handover scheme is evaluated by the OPNET simulator, and we confirm the proposed scheme can support seamless services.

A Mechanism for Seamless Mobility Service with the Network-based Preemptive Operations (네트워크 기반의 Preemptive 동작을 통한 끊김없는 서비스 제공 메커니즘)

  • Min, Byung-Ung;Chung, Hee-Chang;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.54-57
    • /
    • 2007
  • Much researches have studied for seamless mobility service. Those focused on minimizing the delay time due to the handover. In this paper, we suggest seamless mobility service with the network-based preemptive operations. With these operations, if it's found that the MT(Mobile Terminal)'s handover using L2-trigger event, old access network buffers the delivering data. Therefore this can decrease the data drop rates. And also, this can deal with the ping-pong's phenomenon of MT. At the end of MT's movement, these operations can provide seamless mobility service sending buffered data after checking the MT's movement. This mechanism uses MPLS-LSP(MultiProtocol Label Switching-Label Switched Path) in core network for fast process.

  • PDF

Improving the Performance of L3 Handover Mobility Management in Heterogeneous Wireless Network (이종 무선망에서 L3 핸드오버 이동성 관리 성능 향상)

  • Hong, Sung-Back;Lee, Kyeong-Ho;Kim, Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6B
    • /
    • pp.382-389
    • /
    • 2007
  • In this paper we report the development of mobility test bed, the realization of basic protocol that supports L3 mobility and the measurement of performance parameters that can affect handover performance. Previously proposed mobility management system, BBM (Break Before Make) method such as MIPV6 and Fast MIPV6, uses one interface in wireless network. In this method, to connect to new AP, it first disconnects existing AP and tries to connect to new AP. This can cause packet loss for the traffic vulnerable to delay such as VoIP. To provide seamless handover between different wireless networks, we propose MBB (Make Before Break) handover method having two network interfaces. Comparative study of previous method and proposed method on mobility and handover was conducted under simulated real environment on the test bed. Almost no packet loss was found with newly proposed method. In conclusion, it is shown that mobility protocol with proposed handover method can be applied to the application services sensitive to delay and packet loss.

Cross-Layer Handover Scheme Using Linear Regression Analysis in Mobile WiMAX Networks (선형 회귀 분석을 이용한 모바일 와이맥스에서 계층 통합적 핸드오버 기법)

  • Choi, Yong-Hoon;Yun, Seok-Yeul;Chung, Young-Uk;Kim, Beom-Joon;Lee, Jung-Ryun;Lee, Hyun-Joon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.91-99
    • /
    • 2009
  • Mobile WiMAX is an emerging technology that can provide ubiquitous Internet access. To provide seamless service in mobile WiMAX environment, delay or disruption in dealing with mobility must be minimized. However offering seamless services on IEEE 802.16e networks is very hard due to long handover latency both in layer 2 and 3. In this paper, we propose a fast cross-layer handover scheme based on prediction algorithm. With the help of the prediction, layer-3 handover activities are able to occur prior to layer-2 handover, and therefore, total handover latency can be reduced. The experiments conducted with system parameters and propagation model defined by WiMAX Forum demonstrate that the proposed method predicts the future signal level accurately and reduces the total handover latency.

  • PDF

QoS Provisioning for Forced Inter-System Handover (강제 시스템간 핸드오버 시 QoS 보장 방안)

  • Lee, Moon-Ho;Lee, Jong-Chan
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.89-98
    • /
    • 2010
  • In the heterogeneous system of various wired or wireless network with IP-based backbone, the continuities of agreedon QoS for multimedia services should be guaranteed regardless of network types and terminal mobility through seamless vertical handover. This paper proposes a QoS provisioning mechanism called D-ISHO which guarantees the continuities of agreed-on QoS and seamless for multimedia services by considering both such characteristics as delay, loss rate and jitter per each service and such status as available band-width, call arrival rate and data transmission rate during the vertical handover. Simulation is done for performance analysis with the measure of handover failure rate and packet loss rate.

A Network Model using IP Mobility Anchor for UMTS-WLAN Internetworking (Mobile IP와 Mobility Anchor를 이용한 결합구조 방식의 UMTS-WLAN 연동망 모델)

  • Kim, In-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.189-190
    • /
    • 2007
  • We propose an efficient internetworking model for fast handover between UMTS and WLAN networks. Mobility anchor (MA) is provided at the boundary between GGSN and PDG, under the 3GPP-proposed internetworking reference model. Such MA can enable authentication and session initialization before L2 handover of the mobile terminal, so that seamless and fast vertical handover could be possible.

  • PDF

A Study on the Seamless Monitoring over the Wireless LAN and the Public Cellular Network for a Portable Patient Monitoring System

  • Kim Woo-Shik;Cho Hyang-Duck
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.14-21
    • /
    • 2006
  • As information technologies are developing, the improvement of the quality of life becomes worldwide issues. Especially, to improve the quality of life of a patient suffering intermittent diseases, in addition to the some portable equipments for measuring, analyzing, and notifying the status of the patients, methods of communication for seamless transmission of the measured data over to the remote site, such as an emergency center or a hospital, are required. In this paper, we address a seamless transmission of patient monitoring data such as ECG from a moving patient to a remote site, wherever the patient may be. We divide the whole environments into two wireless communication environments: an indoor one based on WLAN and an outdoor one based on CDMA cellular network in which the patient is assumed to move anywhere. We develop algorithms, implement them on a PDA-based hardware platform, and show some of the results for handover between the two environments in addition to the data transmission for each of the two environments.

P2P-based Mobility Management Protocol for Global Seamless Handover in Heterogeneous Wireless Network (이기종망에서 글로벌 끊김 없는 핸드오버를 위한 P2P 기반 이동성 관리 프로토콜)

  • Chun, Seung-Man;Lee, Seung-Mu;Park, Jong-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.73-80
    • /
    • 2012
  • In this article, we propose a P2P-based mobility management protocol for global seamless handover in heterogeneous wireless networks. Unlike previous mobility management protocols such as IETF MIPv4/6 and its variants, the proposed protocol can support global seamless handover without changing the existing network infrastructure. The idea of the proposed protocol is that the location management function for mobility management is separately supported from packet forwarding function, and bidirectional IP tunnels for packet transmission are dynamically constructed between two end-to-end mobile hosts. In addition, early handover techniques have been developed to avoid large handover delays and packet losses using the IEEE 802.21 Media Independent Handover functions. The architecture and signaling procedure of the proposed protocol have been designed in detail, and the mathematical analysis and simulation have been done for performance evaluation. The performance results show that the proposed protocol outperforms the existing MIPv6 and HMIPv6 in terms of handover latency and packet loss.

Design and Implementation of Location Based Seamless Handover for IEEE 802.11s Wireless Mesh Networks (IEEE 802.11s 무선 메쉬 네트워크를 위한 위치 기반 핸드오버의 설계 및 구현)

  • Lee, Sung-Han;Yang, Seung-Chur;Kim, Jong-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2004-2010
    • /
    • 2009
  • The characteristic of the backbond for distribution service in WMNs(Wireless Mesh Networks) is that WMNs has multiple links connected to mesh points and dynamic routing protocol such as AODV to establish routing paths. When the terminal is communicating with the service through new AP, mobile nodes can resume communication by setting only the link between new AP and mobile node in the case of existing WLANs, but WMNs needs path establishment process in multihop networks. Our goal in this paper is to support the seamless communication service by eliminating path establishment delay in WMNs. We present the method that eliminates the handover latency by predicting the location of handover using GPS information and making the paths to their destination in advance. We implement mesh nodes using embedded board that contains proposed handover method and evaluate performance of handover latency. Our experiment shows that handover delay time is decreased from 2.47 to 0.05 seconds and data loss rate is decreased from 20~35% in the existing method to 0~10% level.