• Title/Summary/Keyword: seabed

Search Result 591, Processing Time 0.029 seconds

Wave Pressure and Wave Height Distribution around Seawall Structure Constructed by an Array of TSP Circular Piles (TSP 원형 파일 배열로 조성된 호안 구조물에 작용하는 파압 및 파고 분포)

  • Hyun-Ju Han;Woo-Sik Kim;Il-Hyoung Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.4
    • /
    • pp.129-137
    • /
    • 2024
  • An analytic solution for the interaction between an array of circular piles made by joining trapezoid steel pipes (TSP) and waves was obtained using an eigenfunction expansion method. First, an analytic model for the wave scattering of multiple piles fixed at arbitrary positions was derived, and then a simplified model was obtained assuming that an infinite array of identical piles were deployed perpendicular to the propagating direc- tion of incident waves. A regular wave experiment was conducted using an experimental model with a scale ratio of 1/100 in a two-dimensional wave tank to verify the analytic solutions. The analytic results and experimental results were qualitatively consistent with each other. Using a developed analytic model, we examined the wave force on the multiple piles and the wave deformation in front of the arrayed piles. The period for the installation is greatly reduced as the TSP pile can be prefabricated in a factory. In particular, it is possible to install at the soft seabed. A seawall structure using arrayed TSP piles will be an ideal complement for a concrete seawall in future.

Characteristics of Pockmark Topography in Hupo Basin, East Sea (동해 후포분지의 Pockmark 해저지형 특성 연구)

  • Kim, ChangHwan;Park, ChanHong;Lee, MyoungHoon;Choi, SoonYoung;Kim, WonHyuck
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.561-571
    • /
    • 2019
  • The Hupo Basin, continental marginal basin, of the East Sea extends to Uljin-gun and Yeongdeok-gun. The Hupo Bank, a terrain that is higher than the surrounding seabed, is located at the eastern boundary of the Hupo Basin. KIOST(Korea Institute of Ocean Science and Technology) conducted detailed bathymetry surveys in the northern, central and southern areas of the Hupo Basin from 2011 to 2013. The Hupo Basin, bounded by steep slopes of the Hupo Bank, is deepened from the west coast to the east and deepest to a maximum depth of about 250 m. A narrow seafloor channel appears in the northern, central, and southern areas with the deepest depths. Numerous pockmarks appear on the seafloor at depths of about 150 ~ 250 m in all the three areas of the detailed bathymetry surveys. These pockmarks generally have diameters of about 20 to 50 m and depths of about 4 to 6 m, with craterlike submarine topography of various sizes. Seafloor sediments in the pockmark areas consist of fine silt. Comparing the shape and size of the pockmark of the Hupo Basin with that of other regions of the world, it is considered to be classified as a normal pockmark. There are about 7 pockmarks/1 ㎢ in the northern part of the three areas and about 8 pockmarks/1 ㎢ in the central part. The southern part has about 5 pockmarks/1 ㎢. If the area with the possibility of pockmarks is extended to the depth area of about 150 ~ 250 m in the entire Hupo Basin, the number of pockmarks is estimated to be more than about 4800. The pockmark of the Hupo Basin is more likely to be generated by a fluid such as a liquid than a gas. But it is necessary to scrutinize the cause and continuously monitor the pockmark.

Mass Physical Properties in Deep-Sen Sediment from the Clarion-Clipperton Fracture Zone, Northeast Equatorial Pacific (북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 물리적 특성에 관한 연구)

  • Chi, Sang-Bum;Lee, Hyun-Bok;Kim, Jong-Uk;Hyeong, Ki-Seong;Ko, Young-Tak;Lee, Kyeong-Yang
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.739-752
    • /
    • 2006
  • Deep-sea surface sediments acquired by multiple corer from 69 stations in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific, were examined to understand the correlation of mass physical properties and sedimen-tological processes. The seabed of the middle part ($8-12^{\circ}N$) of the study area is mainly covered by biogenic siliceous sediment compared with pelagic red clays in the northern part ($16-17^{\circ}N$). In the southern part ($5-6^{\circ}N$), water depth is shallower than carbonate compensation depth (CCD). The mass physical properties such as grain size distribution, mean grain size, water content, specific grain density, wet bulk density, void ratio, and porosity of sediments are distinctly different among the three parts of the study area. Surface sediments in northern part are characterized by fine grain size and low water contents possibly due to low primary productivity and high detrital input. Conversely, sediments in the middle part are characterized by coarse grain size and high water contents, which might be caused by high surface productivity and deeper depth than CCD. The sediments show low water contents and high density in the southern part, which can be explained by shallower depth than CCD. Our results suggest that the variations in mass physical properties of sediments are influenced by combined effects including biogenic primary productivity of surface water, water depth, especially with respect to CCD, sedimentation rate, detrital input, and the geochemistry of the bottom water (for example, formation of authigenic clay minerals and dissolution of biogenic grains).

A Study on Detailed Bathymetry and Geophysical Characteristics of the Summit of the Dokdo Volcano (독도 화산체 정상부해역의 정밀해저지형 및 지구물리학적 특성 연구)

  • Kim, Chang Hwan;Park, Chan Hong;Lee, Myoung Hoon;Choi, Soon Young;Jou, Hyeong Tae
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.685-695
    • /
    • 2012
  • We studied the detailed bathymetry and the geophysical characteristics of the summit of the Dokdo volcano using mutibeam echosounding and geophysical survey data. The bathymetry around the main east and west islets of the Dokdo volcano shows very shallow within about 10 m water depth. From near islets to about 30 m b.s.l., the shallow water area has very steep slope and many irregular sunken rocks. The area from about 30 m to about 80 m b.s.l. shows gentle rises and falls, and less steep slope. The area from 80 m b.s.l. has gradually flat undulation and smooth slope seabaed and is extended to offshore. The main islets of the Dokdo volcano and the rocky sea bottom elongated from the islets might be the residual part of the eroded and collapsed main crater of the Dokdo volcano. The bathymetry and the seafloor image(from backscattering) data show small craters, assumed to be formed by the eruption of later volcanism. The seafloor images propose that, except some areas with shallow sand sedimentary deposits, there are typical rocky bottom such as rocky protrusions and lack of sediments in the main morphology of the survey area. The stepped slopes of the seabed are deduced to be submarine terraces. The several prominent submarine terraces are found at the summit of the Dokdo volcano, suggesting repetition of sea level changes(transgressions and regressions) in the Quaternary. The results of the magnetic anomaly and the analytic signal have a good coherence with other geophysical consequences regarding to the location of the residual crater.

Studies on Estimation of Fish Abundance Using an Echo Sounder ( 1 ) - Experimental Verification of the Theory for Estimating Fish Density- (어군탐지기에 의한 어군량 추정에 관한 기초적 연구 ( 1 ) - 어군량추정이론의 검증실험 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • An experiment has been carefully designed and performed to verify the theory for the echointergration technique of estimating the density of fish school by the use of steel spheres in a laboratory tank. The spheres used to simulate a fish school were randomly distributed throughout the insonified volume to produce the acoustic echoes similar to those scattered from real fish schools. The backscattered echoes were measured as a function of target density at tow frequencies of 50kHz and 200kHz. Data acquisition, processing and analysis were performed by means of the microcomputer-based sonar-echo processor including a FFT analyzer. Acoustic scattering characteristics of a 36cm mackerel was investigated by measuring fish echoes with frequencies ranging from 47.8kHz to 52.0kHz. The fluctuation of bottom echoes caused by the effects of fish-school attenuation and multiple scattering which occurred in dense aggregations of fishes was also examined by analyzing the echograms of sardine schools obtained by a 50kHz telesounder in the set-net's bagnet, and the echograms obtained by a scientific echo sounder of 50kHz in the East China Sea, respectively. The results obtained can be summarized as follows: 1. The measured and the calculated echo shapes on the steel sphere used to simulate a fish school were in close agreement. 2. The waveform and amplitude of echo signals by a mackerel without swimbladder fluctuated irregularly with the measuring frequency. 3. When a collection of 30 targets/m super(3) lied the shadow region behind another collection of 5 targets/m super(3), the mean losses in echo energy for the 30 targets/m super(3) were about -0.4dB at 50kHz and about -0.2dB at 200kHz, respectively. 4. In the echograms obtained in the East China Sea, the bottom echoes fluctuated remarkably when the dense aggregations of fish appeared between transducer and seabed. Especially, in the case of the echograms of sardine school obtained in a set-net's bagnet, the disappearance of bottom echoes and the lengthening of the echo trace by fish aggregations were observed. Then the mean density of the sardine school was estimated as 36 fish/m super(3). It suggests that when the distribution density of fishes in oceans is greater than this density, the effects of fish-school attenuation and multiple scattering must be taken into account as a possible source of error in fish abundance estimates. 5. The relationship between mean backscattering strength (, dB) and target density ($\rho$, No./m super(3)) were expressed by the equations: =-46.2+13.7 Log($\rho$) at 50kHz and =-43.9+13.4 Log($\rho$) at 200kHz. 6. The difference between the experimentally derived number and the actual number of targets gradually decreased with an increase in the target density and was within 20% when the density was 30 targets/m super(3). From these results, we concluded that when the number of targets in the insonified volume is large, the validity of the echo-integration technique of estimating the density of fish schools could be expected.

  • PDF

Environmentally Associated Spatial Distribution of a Macrozoobenthic Community in the Continental Shelf off the Southern Area of the East Sea, Korea (한국 동해 남부해역 대륙붕에 서식하는 대형저서동물군집 공간분포를 결정하는 환경요인)

  • Lee, Jung-Ho;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil;Choi, Tae Seob;Gim, Byeong-Mo;Ryu, Jongseong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.1
    • /
    • pp.66-75
    • /
    • 2014
  • This study aims to understand environmental factors that determine spatial distribution of macrozoobenthic community in the southern area (ca 100-500 m depth) of East Sea, Korea, known as a candidate site for carbon storage under the seabed. From sixteen locations sampled in the summer of 2012, a total of 158 species were identified, showing density of $843indiv/m^2$ and biomass of $26.2g\;WW/m^2$, with increasing faunal density towards biologically higher diverse locations. Principal component analysis showed that a total of 33 environmental parameters were reduced to three principal components (PC), indicating sediment, bottom water, and depth, respectively. As sand content was increasing, number of species increased but biomass decreased. Six dominant species including two bivalve species favored high concentrations of ${\Omega}$ aragonite and ${\Omega}$ calcite, indicating that the corresponding species can be severely damaged by ocean acidification or $CO_2$ effluent. Cluaster analysis based on more than 1% density dominant species classified the entire study area into four faunal assemblage (location groups), which were delineated by characteristic species, including (A) Ampelisca miharaensis, (B) Edwardsioides japonica, (C) Maldane cristata, (D) Spiophanes kroeyeri, and clearly separated in terms of geography, bottom water and sediment environment. Overall, a discriminant function model was developed to predict four faunal assemblages from five simply-measured environmental variables (depth, sand content in sediment, temperature, salinity and pH in bottom water) with 100% accuracy, implying that benthic faunal assemablages are closed linked to certain combinations of abiotic factors.

Improvements in the Marine Environmental Survey on Impact of Seawater Qualities and Ecosystems due to Marine Sand Mining (바다모래 채취 시 해수 수질 및 생태계 영향에 대한 해양환경조사 개선 방안)

  • Kim, Yeong-Tae;Kim, Gui-Young;Jeon, Kyeong-Am;Eom, Ki-Hyuk;Kim, In-Chul;Choi, Bo-Ram;Kim, Hee-Jung;Kim, Jin-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.143-156
    • /
    • 2014
  • We reviewed investigation status on turbidity plume in the statement of marine environmental survey(2008 to 2012) associated with marine sand extraction projects. The survey statement from seven marine sand extraction sites (extraction area of Southern EEZ, extraction area of Western EEZ, relocation zone in the Western EEZ, sea area under jurisdiction of Taean-gun, sea area under jurisdiction of Ansan City, and two discrete sea areas under jurisdiction of Ongjin-gun) in the nearshore and offshore of Korea showed that in situ observations were carried out for the dispersion and transport of suspended sediments on two areas (One is a extraction area in the EEZs, the other is an area of coastal sites). However, sampling station and range have not been selected considering physical, geographical factors (tide, wave, stratification, water depth, etc.) and weather conditions (wind direction and velocity, fetch, duration, etc). Especially turbidity plumes originating from three sources, which include suspended sediments in overflow(or overspill) discharged from spillways and reject chutes of dredging vessel, and resuspended sediments from draghead at the seabed, may be transported to a far greater distance outside the boundary of the extraction site and have undesirable impacts on the marine environment and ecosystem. We address that behaviour of environmental pollutants such as suspended solids, nutrients, and metals should be extensively monitored and diagnosed during the dispersion and transport of the plume. Finally we suggest the necessity to supplement the current system of the sea area utilization consultation and establish the combined guidelines on marine sand extraction to collect basic data, to monitor cumulative effects, and to minimize environmental damages incurred by the aftermath of sand extraction.

A Study of Habitat Environment Mapping Using Detailed Bathymetry and Seafloor Data in the Southern Shore of the East Sea(Ilsan Beach, Ulsan) (정밀 해저지형 및 해저면 자료를 활용한 동해 남부 연안(울산 일산해변) 생태계 서식지 환경 맵핑 연구)

  • Choi, SoonYoung;Kim, ChangHwan;Kim, WonHyuck;Rho, HyunSoo;Park, ChanHong
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.717-731
    • /
    • 2021
  • We analyzed the characteristics of the habitat environment for the Seonam study area in Ulsan, the southern shore of the East Sea using bathymetry and seafloor environment data. The depth of the study area ranges from about 0 m to 23 m. In the west of the study area, the water depth is shallow with a gentle slope, and the water depth becomes deeper with a steep slope in the east. Due to the right-lateral strike-slip faults located in the continental margin of the East Sea, the fracture surfaces of the seabed rocks are mainly in the N-S direction, which is similar to the direction of the strike faults. Three seafloor types (conglomeratic-grained sandy, coasre-graiend sandy, fine-grained sandy) and rocky bottom area have been classified according to the analyses of the bathymerty, seafloor image, and surface sediment data. The rocky bottom areas are mainly distributed around Seaoam and in the northern and southern coastal area. But the intermediate zone between Seonam and coastal area has no rocky bottom. This intermediate area is expected to have active sedimentation as seawater way. The sandy sediments are widely distributed throughout the study area. Underwater images and UAV images show that Cnidarians, Brachiopods, Mollusks are mostly dominant in the shallow habitat and various Nacellidae, Mytilidae live on the intertidal zone around Seonam. Annelida and Arthropod are dominant in the sandy sediments. The distribution of marine organism in the study area might be greatly influenced by the seafloor type, the composition and particle size distribution of the seafloor sediments. The analysis of habitat environment mapping with bathymetry, seafloor data and underwater images is supposed to contribute to the study of the structure and function of marine ecosystem.

An Analytical Study on Rational use of Undersea Space (해저공간의 합리적 활용을 위한 분석적 연구)

  • Won-Jo Jung;Nam-Ki Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.147-154
    • /
    • 2023
  • This study aims to determine the necessity, role, utilization, and operation and management plan in relation to the underwater space platform where humans can newly reside. It provides a comprehensive opinion on the need for creating undersea space and operation plans based on opinions of industry-university-affiliated organizations involved in the R&D project of the Ministry of Maritime Affairs and Fisheries for the utilization of undersea space and external experts participating in marine technology development. In this study, a survey was conducted on researchers participating in the construction of a Korean submarine space platform. FGI was conducted on marine technology development experts. Results were then derived. As a result of the analysis, the need for subsea space construction was found to be high. As for the role of subsea space, the most common opinion was to develop technology for utilizing subsea space and to secure marine science research functions. It was found that the creation of subsea space would have a positive impact on the domestic industry, especially the deep-sea development industry and the shipbuilding/offshore structure industry. In terms of utilization, after the end of the seabed space test bed, the response to utilization as a marine observation base and marine ecosystem research had the highest proportion. As for expected inconvenience, discomfort in the psychological environment was the highest. Experts suggest that securing a continuous budget is most important for stable operation in the future and that securing a manpower budget is essential for itemized budgets. In addition, it was judged that it would be appropriate to establish a prior agreement from the time of the prior agreement and prepare a countermeasure before proceeding with the project in order to ensure ownership issues, consignment management issues, and cost issues when using the project after the end of the project.

A study on Convergence Weapon Systems of Self propelled Mobile Mines and Supercavitating Rocket Torpedoes (자항 기뢰와 초공동 어뢰의 융복합 무기체계 연구)

  • Lee, Eunsu;Shin, Jin
    • Maritime Security
    • /
    • v.7 no.1
    • /
    • pp.31-60
    • /
    • 2023
  • This study proposes a new convergence weapon system that combines the covert placement and detection abilities of a self-propelled mobile mine with the rapid tracking and attack abilities of supercavitating rocket torpedoes. This innovative system has been designed to counter North Korea's new underwater weapon, 'Haeil'. The concept behind this convergence weapon system is to maximize the strengths and minimize the weaknesses of each weapon type. Self-propelled mobile mines, typically placed discreetly on the seabed or in the water, are designed to explode when a vessel or submarine passes near them. They are generally used to defend or control specific areas, like traditional sea mines, and can effectively limit enemy movement and guide them in a desired direction. The advantage that self-propelled mines have over traditional sea mines is their ability to move independently, ensuring the survivability of the platform responsible for placing the sea mines. This allows the mines to be discreetly placed even deeper into enemy lines, significantly reducing the time and cost of mine placement while ensuring the safety of the deployed platforms. However, to cause substantial damage to a target, the mine needs to detonate when the target is very close - typically within a few yards. This makes the timing of the explosion crucial. On the other hand, supercavitating rocket torpedoes are capable of traveling at groundbreaking speeds, many times faster than conventional torpedoes. This rapid movement leaves little room for the target to evade, a significant advantage. However, this comes with notable drawbacks - short range, high noise levels, and guidance issues. The high noise levels and short range is a serious disadvantage that can expose the platform that launched the torpedo. This research proposes the use of a convergence weapon system that leverages the strengths of both weapons while compensating for their weaknesses. This strategy can overcome the limitations of traditional underwater kill-chains, offering swift and precise responses. By adapting the weapon acquisition criteria from the Defense force development Service Order, the effectiveness of the proposed system was independently analyzed and proven in terms of underwater defense sustainability, survivability, and cost-efficiency. Furthermore, the utility of this system was demonstrated through simulated scenarios, revealing its potential to play a critical role in future underwater kill-chain scenarios. However, realizing this system presents significant technical challenges and requires further research.

  • PDF