• Title/Summary/Keyword: sea-salt

Search Result 527, Processing Time 0.031 seconds

Characterization of a Fibrinolytic Enzyme Secreted by Bacillus velezensis BS2 Isolated from Sea Squirt Jeotgal

  • Yao, Zhuang;Kim, Jeong A;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.347-356
    • /
    • 2019
  • Bacillus sp. BS2 showing strong fibrinolytic activity was isolated from sea squirt (munggae) jeotgal, a traditional Korean fermented seafood. BS2 was identified as B. velezensis by molecular biological methods. B. velezensis BS2 grows well at 15% NaCl and at $10^{\circ}C$. When B. velezensis BS2 was cultivated in TSB broth for 96 h at $37^{\circ}C$, the culture showed the highest fibrinolytic activity ($131.15mU/{\mu}l$) at 96 h. Three bands of 27, 35 and 60 kDa were observed from culture supernatant by SDS-PAGE, and fibrin zymography showed that the major fibrinolytic protein was the 27 kDa band. The gene (aprEBS2) encoding the major fibrinolytic protein was cloned, and overexpressed in heterologous hosts, B. subtilis WB600 and E. coli BL21 (DE3). B. subtilis transformant showed 1.5-fold higher fibrinolytic activity than B. velezensis BS2. Overproduced AprEBS2 in E. coli was purified by affinity chromatography. The optimum pH and temperature were pH 8.0 and $37^{\circ}C$, respectively. $K_m$ and $V_{max}$ were 0.15 mM and $39.68{\mu}M/l/min$, respectively, when N-succinyl-Ala-Ala-Pro-Phe-pNA was used as the substrate. AprEBS2 has strong ${\alpha}$-fibrinogenase and moderate ${\beta}$-fibrinogenase activity. Considering its high fibrinolytic activity, significant salt tolerance, and ability to grow at $10^{\circ}C$, B. velezensis BS2 can be used as a starter for jeotgal.

Physiological Responses of Rice Plant as Influenced by Salinity Stress Using Sea Water (해수 농도에 따른 수도의 몇가지 생리적 반응)

  • 송연상;최원열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.6
    • /
    • pp.483-488
    • /
    • 1993
  • This study was conducted to obtain the basic information for easily judgement to level of salinity stress of the reclaimed land. Rice varieties used were Nakdongbyeo and Chilsungbyeo. In seedling stage, 13 day-old seedlings were subjected to salt solution (0, 30, 60, 90mM) for 8 days. In reproductive stage, 30 day-old seedlings were transplanted 3 hills(3 seedlings /hill) per plastic pot (diameter 28${\times}$depth 30cm). Salinity stress was given by immersing pot in the salt solution(sea water) with 4 concentrations(0, 30, 60, 90mM)for 8 days at booting stage. The stomatal resistance was increased with salinity concentrations. Salinity stress appeared to be more sensitive in seedling stage than in reproductive stage in each concentrations. The photosynthesis was decreased in salinity treatment. Salt-treated periods influenced unfavorably stomatal resistance in each stages. The leaf chlorophyll content was remarkably decreased by increasing salt concentrations. The absorption of Na+ and Cl ̄ were increased as salt concentration in the culturing medium became higher, but there was no appearent difference in the absorption of K+, Mg++, and Ca++. The plant height and root length were decreased in salinity treatment. The inhibitory effect of salinity stress on root growth was more severe than in shoot growth. The stomatal resistance could have been used as bio-information.

  • PDF

Actual Vegetation and Vegetation Structure at the Coastal Sand Bars in the Nakdong Estuary, South Korea (낙동강 하구 연안사주섬의 현존식생 및 식생구조 연구)

  • Lee, Youl-Kyong;Ahn, Kyung-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.6
    • /
    • pp.911-922
    • /
    • 2012
  • This study aim that definite the relationship between coastal environment and different sand bar communities, as well as to analyze their spatial distribution of barrier island in the Nakdong river estuary. Survey method follow by Braun-Blanquet(1965) and there a total of 118 relev$\acute{e}$'s were undertaken. Definition of the relationships between species and environmental variables with Canonical Correlation Analysis(CCoA) and that to applied these relev$\acute{e}$'s with the RIM(Kim and Kim, 2006) program and that to classification used the SYN-TAX 2000 program(Podani 1979). On the basis of about 118 phytosociological releve's, the vegetation of xeric and hydric type was arranged in twelve plant communities: Xeric type-Pinus thunbergii community,Vitex rotundifolia community, Carex pumila community, Imperata cylindrica var. koenigii community, Miscanthus sacchariflorus community and Calystegia soldanella community, Hydric type-Salix dependens-Calamagrostis epigeios community, Calamagrostis epigeios-Phragmites communis community, Phragmites communis-Ischaemum aristatum community, Phragmites communis community, Scirpus planiculmis community and Suaeda glauca-S. japonica community.These plant communities represents sand dune vegetation and salt marsh vegetation. Widely distributing types in the actual vegetation map were sea club-rush community, reed community in salt marsh, and dry grassland. The edge in the coastal sand bars has zonation that almost distribution by the reed community in salt marsh. But outside of it were distributed sea club-rush community. Dry grassland type distributes higher zone of the center in coastal sand bars. Respectively, the coastal sand dune and salt marsh vegetation types were distributed ocean and inland on the frontier of it.

Growth responses of New Zealand Spinach [Tetragonia tetragonoides (Pall.) Kuntze] to different soil texture and salinity (신규 채소작물용 번행초의 토성 및 염도에 대한 생육 반응)

  • Kim, Sung-Ki;Kim, In-Kyung;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.631-639
    • /
    • 2011
  • This research was conducted to investigate potential use of New Zealand spinach (Tetragonia tetragonoides) as a new vegetable crop which will be cultivating in salt-affected soils including reclaimed land. Traditionally New Zealand spinach has been studied to explore functional compound or salt removing potential. To cultivate the crop species in the salt-affected soil widely, it is essential to obtain salt and soil texture responses under the controlled environment. Fifty nine New Zealand spinach ecotypes native to Korean peninsula first collected over seashore areas, and primitive habitat soil environment was evaluated by analyzing soil chemical properties from 32 locations. Different textures of sandy, silt loam, and sandy loam soils were prepared from nearby sources of sea shore, upland and paddy soils, respectively. Target salinity levels of 16.0 dS/m, 27.5 dS/m, 39.9 dS/m, and 52.4 dS/m in electrical conductivity (ECw) were achieved by diluting of 25, 50, 75, 100% (v/v) sea water to tap water (control, 0.6 dS/m), respectively. Various measurements responding to soil texture and irrigation salinity included plant height, root length, fresh weight (FW), dry weight (DW), leaf parameters (leaf number, leaf length, leaf width), lateral branching, and inorganic ion content. was found to adapt to diverse habitats ranging various soil chemical properties including soil pH, organic matter, exchangeable bases, EC, and cation exchange capacity (CEC) in Korea. Responding to soil texture, New Zealand spinach grew better in silt loam and sandy loam soil than in sandy soil. Higher yield (FW and DW) seemed to be associated with branch number (r=0.99 and 0.99, respectively), followed by plant height (r=0.94 and 0.97, respectively) and leaf number (r=0.89 and 0.84, respectively). Plant height, FW, and DW of the New Zealand spinach accessions were decreased with increasing irrigation salinity, while root length was not significantly different compared to control. Based on previous report, more narrow spectrum of salinity range (up to 16 dS/m) needs to be further studied in order to obtain more accurate salinity responses of the plant. As expected, leaf Na content was increased significantly with increasing salinity, while K and Ca contents decreased. Growth responses to soil texture and irrigation salinity implied the potential use of New Zealand spinach as a leafy vegetable in salt-affected soil constructed with silt loam or sandy loam soils.

A Prediction on the Wetlands Change of Suncheon Bay by the Sea Level Rise (해수면 상승에 따른 순천만 습지 변화 예측)

  • MOON, Bora;KIM, Dong-Myung;LEE, Suk-Mo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.627-635
    • /
    • 2017
  • Sea level rise caused by climate change has become a global issue. Sea level rise seems to be an important factor of the research for coastal areas as it affects topography and vegetation of coasts and especially for the plan of coastal wetlands restoration which needs to be carried out for a long term, it has to be considered sufficiently. The coastal wetlands in Korea was damaged by the land reclamation project but recent concerns on the restoration have increased as its value is evaluated highly. Suncheon Bay had also reclaimed from wetlands to rice field once however this site is very active for restoration nowadays. This study estimated an effect according to sea level rise by 2100, reappearing the none dike condition of Suncheon Bay so that it can be taken account of a future plan of wetland restoration. The Sea Level Affecting Marshes Model(SLAMM) was selected as predicting model. The input data such as DEM(Digital Elevation Model), slope, wetlands category, sea level rise senario, tidal range and accretion rate was applied for the simulation. The results showed a decrease in tidal flat, an increase in sea area and a change of the rice field to transitional salt marsh consistently by 2100. These results of this study could be used as baseline data in the future plan of ecological restoration in Suncheon Bay.

Effect of the Salt Concentration in Seafood Wastewater on the High-Rate Anaerobic Digestion (수산물 가공폐수내 염분농도가 고율 혐기성 소화에 미치는 영향)

  • Choi, Yong-Bum;Han, Dong-Joon;Lee, Hae-Seung;Kwon, Jae-Hyouk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.730-736
    • /
    • 2013
  • This study was conducted to examine the effects of the salt concentration in seafood wastewater on the high-rate anaerobic digestion process. In the general high-rate anaerobic process test, the TCODcr removal efficiency at 6 hr or more HRT was 81.1~0.7%, and the optimal HRT for seafood wastewater process was found to be 6 hr or more. The methane content in the biogas was 70.1~76.8% during the operation, and was hardly affected by the change in the influent load. The results of the anaerobic digestion efficiency according to the salt concentration showed that the removal efficiency of TCODcr was 83.4~89.2% below a $4,000mgCl^-/L$ salt concentration, and mid-70% at a $5,000mgCl^-/L$ salt concentration. Therefore, the salt concentration had to be kept below $4,000mgCl^-/L$ to ensure stable treatment efficiency. Below a $3,000mgCl^-/L$ salt concentration, the methane generation was 0.2999~0.346$m^3CH_4/kgCODrem.$, which was similar to the theoretical methane gas generation in STP condition ($0.35m^3CH_4/gTCODrem.$). The methane content in the biogas was 64.7~73.3% below a $3,000mgCl^-/L$ salt concentration, but decreased with an increase in the salt concentration, to 50.1~56.9% at a $4,000mgCl^-/L$ concentration.

Theoretical Approach to Calculate Surface Chloride Content $C_s$ of Submerged Concrete under Sea Water Laden Environment

  • Yoon, In-Seok;Ye, Guang;Copuroglu, Oguzhan;Shalangen, Erik;Breugel, Klaas van
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.197-200
    • /
    • 2006
  • The ingress of chloride ions plays a crucial role for service life design of reinforced concrete structures. In view of durability design of concrete structures under marine environment, one of the most essential parameters is the surface chloride content of concrete. However, on the basis of the results of in-situ investigation, this value has been determining in the numerous studies on the durability design of concrete structures. Hence, it is necessary to confirm the range of the surface chloride content in order to establish a unified durability design system of concrete. This study suggests a rational and practical way to calculate the maximum surface chloride content of submerged concrete under marine environment. This approach starts with the calculation of the amount of chloride ingredients in normal sea water. The capillary pore structure is modeled by numerical simulation model HYMOSTRUC and it is assumed to be completely saturated by the salt ingredients of sea water. In order to validate this approach, the total chloride content of the mortar and concrete slim disc specimen was measured after the immersion into the artificial sea water solution. Additionally, the theoretical, the experimental and in-situ investigation results of other researchers are compiled and analyzed. Based on this approach, it will follow to calculate the maximum surface chloride content of concrete at tidal zone, where the environment can be considered as a condition of dry-wetting cycles.

  • PDF

Changes of Proteolytic Activity and Amino Acid Composition of the Tissue Extract from Sea Cucumber Entrails during Fermentation with Salt (해삼내장(內臟)젓갈 숙성중(熟成中) 단백질분해효소(蛋白質分解酵素)의 활성(活性)과 아미노산(酸) 조성(組成)의 변화(變化))

  • Lee, Gi Chan;Cho, Deuk Moon;Byun, Dae Seok;Joo, Hyen Kyu;Pyeun, Jae Hyeung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.4
    • /
    • pp.342-349
    • /
    • 1983
  • This study was undertaken to ascertain food and nutritional evaluating data on the processing of fermented sea cucumber (Stichopus japonicus) entrails. In the experiment, the crude proteolytic enzyme from the entrails tissue of raw and fermented sea cucumber during the days of ripening was extracted. The optimal activity condition for the crude enzyme and the compositional changes of amino acid of the protein and free amino acid in the raw and fermented sample were also investigated. 1. Less than three kinds of proteolytic enzymes that each enzyme has optimal activity condition at pH 3.1 $50^{\circ}C$(A-enzyme), pH 5.7 $50^{\circ}C$(B-enzyme) and pH 7.7 $45^{\circ}C$(C-enzyme), respectively were believed to be exist in the entrails tissue of sea cucumber. 2. A-enzyme and C-enzyme were strongly inhibited with the increase of the salt concentration, and B-enzyme was activated at the 1% salt concentration and was inhibited above the 5% salt concentration. 3. The result of the effect of several salt ions on the proteolytic activity showed that A-enzyme was slightly inhibited in the presence of all salt ions added, B-enzyme was activated in the presence of the all salt ions except $Cu^{2+}$ and C-enzyme was activated in the presence of $Ca^{2+}$ and $Mn^{2+}$, and inhibited by $Cu^{2+}$, $Co^{2+}$ and $Mg^{2+}$. 4. When the effects of the ripening days on the proteolytic activity of the crude enzymes were analysed, the activity of the A-enzyme was slightly weakened with the lapse of the fermentation days, whereas the B-enzyme was not influenced by the fermentation days. 5. In the analysis of amino acid composition of the protein of the samples, the 8 days fermented sea cucumber entrails showed the diminution of all kinds of amino acid. Apparently diminished amino acids were arginine, alanine, glutamic acid, glycine, serine, valine, threonine and lysine etc., and methionine, histidine and isoleucine were slightly decreased. 6. In the analysis of free amino acid composition of the 8 days fermented sample, glutamic acid, aspartic acid, leucine and lysine were rich, while histidine, methionine, proline and tyrosine were poor. The most of free amino acids were increased during the fermentation procedure and especially in lysine, histidine, threonine, glutamic acid, methionine, valine and leucine.

  • PDF

Integrated Automatic Salinity Monitoring System for the Reclaimed Land of Estuary With WCDMA (WCDMA를 이용한 간척지 하구의 염분 통합모니터링 시스템)

  • Jeong, Da-Woon;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.310-313
    • /
    • 2012
  • Recently, Land reclamation created agricultural land which is farming. Agricultural land which is farming have accident with frequency it is damage to crop of from brine. So, desalinization is the first priority prerequisite task in using the in reclaimed farm land. Vibrant research and technical development is working for reclaimed of desaliaization. But, Current technology is impossible desalinization of reclaimed land. As fast almost of people don't worry about concentration of salt in using the land reclamation of agricultural land irrigation water and river mouth of fountainhead of efforting from freshwater lake also ebb and flow of the tide land reclamation of agricultural land influnce from an increase of salt concentration by weather conditions and a malfunction of sea dike sluice In this paper, current is increased salt concentration in real time graphs were implemented to utilize external servers in using the WCDMA module. Inaddition it have to operate alarm in increase of salt concentration. besides, this program have implemented realtime concentration of salt monitoring system which save date in realtime the user can check again.

  • PDF

Assessment of Hydraulic Conductivity of Modified Bentonite and Local Soil Mixture under Salt Water Condition (개량 벤토나이트와 현장토 혼합 차수층의 염수조건하에서의 투수성 평가)

  • Xu, Xin;Oh, Myounghak;Park, Junboum
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.97-104
    • /
    • 2017
  • A bentonite mixing with local soil widely used as liner layer for landfill should have low permeability less than $1{\times}10^{-7}cm/s$. But there are several limitations of bentonite used as liner layer, such as drying shrinkage cracking, ineffective waterproof ability under salt water condition like flocculation under sea water. The purpose of this research is the development of a salt resistance bentonite by mixing sepiolite and guar gum to overcome the weak points of bentonite to get high water resistance capacity and permeability coefficient below $1{\times}10^{-7}cm/s$ under salt water condition. After having performed drying shrinkage cracking test, swelling index test, compaction test, and hydraulic conductivity test we confirmed the optimal mixing ratio of materials and evaluated the performance of materials.