DOI QR코드

DOI QR Code

Effect of the Salt Concentration in Seafood Wastewater on the High-Rate Anaerobic Digestion

수산물 가공폐수내 염분농도가 고율 혐기성 소화에 미치는 영향

  • Choi, Yong-Bum (Department of Environmental Engineering, Kangwon National University) ;
  • Han, Dong-Joon (Department of Fire.Environmental Disaster, Gangwon Provincial College) ;
  • Lee, Hae-Seung (Department of Fire.Environmental Disaster, Gangwon Provincial College) ;
  • Kwon, Jae-Hyouk (Department of Environmental Engineering, Kangwon National University)
  • 최용범 (강원대학교 환경공학과) ;
  • 한동준 (강원도립대학 소방환경방재과) ;
  • 이해승 (강원도립대학 소방환경방재과) ;
  • 권재혁 (강원대학교 환경공학과)
  • Received : 2013.09.12
  • Accepted : 2013.10.18
  • Published : 2013.10.30

Abstract

This study was conducted to examine the effects of the salt concentration in seafood wastewater on the high-rate anaerobic digestion process. In the general high-rate anaerobic process test, the TCODcr removal efficiency at 6 hr or more HRT was 81.1~0.7%, and the optimal HRT for seafood wastewater process was found to be 6 hr or more. The methane content in the biogas was 70.1~76.8% during the operation, and was hardly affected by the change in the influent load. The results of the anaerobic digestion efficiency according to the salt concentration showed that the removal efficiency of TCODcr was 83.4~89.2% below a $4,000mgCl^-/L$ salt concentration, and mid-70% at a $5,000mgCl^-/L$ salt concentration. Therefore, the salt concentration had to be kept below $4,000mgCl^-/L$ to ensure stable treatment efficiency. Below a $3,000mgCl^-/L$ salt concentration, the methane generation was 0.2999~0.346$m^3CH_4/kgCODrem.$, which was similar to the theoretical methane gas generation in STP condition ($0.35m^3CH_4/gTCODrem.$). The methane content in the biogas was 64.7~73.3% below a $3,000mgCl^-/L$ salt concentration, but decreased with an increase in the salt concentration, to 50.1~56.9% at a $4,000mgCl^-/L$ concentration.

본 논문은 수산물가공 폐수내 염분농도가 고율 혐기성 소화공정에 미치는 영향을 파악하고자 수행되었다. HRT 6 hr 이상에서 TCODcr의 제거효율은 81.1~90.7%로 조사되어, 수산물 가공폐수 처리를 위한 최적 HRT는 6 hr 이상으로 조사되었다. 유기물 부하 7.83~17.37 $kgTCODcr/m^3$/day$에서 TCODcr 제거당 메탄 발생량은 0.23~0.38 $m^3CH_4/kgCODrem.$으로 STP 상태의 이론적 메탄가스 발생량 $0.35m^3CH_4/kgTCODrem$.과 유사하게 조사되었다. 운전기간 동안 biogas내 메탄 함량은 70.1~76.8%로 유입부하 변동에 거의 영향을 받지 않았다. 염분농도에 따른 혐기성 소화효율 검토결과, $4,000mgCl^-/L$ 이하에서 TCODcr의 제거효율은 83.4~89.2%로, $5,000mgCl^-/L$에서는 70% 중반의 제거효율을 나타내, 안정적인 처리효율을 위해서는 $4,000mgCl^-/L$ 이하로 유지하여야 한다. biogas내 메탄함량은 $3,000mgCl^-/L$ 이하에서는 64.7~73.3%로 조사되었으나 $4,000mgCl^-/L$ 이상에서는 50.1~56.9%로 염분농도가 증가할수록 감소하였다.

Keywords

References

  1. Choi, Y. B., Kwon, J. H. and Rim, J. M., "Effect of the Concentration in Seafood Processing Wastewater on th Anaerobic Ultimate Biodegradability and Multiple Decay Rate of Organic Matter," J. Kor. Soc. Environ. Eng., 32(11), 1038-1045(2010).
  2. Kim, S. J., Lee, D. H. and Park, H. S., "Removal of Organic and Nutrients in Fish Market Wastewater using Sequencing Batch Reactor (SBR)," J. Kor. Soc. Water Qual., 23(1), 46-51(2007).
  3. Paik, B. C. and Shin, H. S., "Treatment of Fish Processing Wastewater Using Sequencing Batch Reactor (SBR)," J. Kor. Soc. Water Wastewater, 1, 18-26(1994).
  4. Jeong, B. C., Park, K. S. and Jeong, B. G., "Simultaneous Removal of Organic and Nitrogen in the Treatment of Fish Processing Wastewater using Entrapped Mixed Microbial Cell (EMMC) Process," J. Kor. Soc. Water Qual., 22(3), 492- 497(2006).
  5. Choi, Y. B., Kwon, J. H. and Rim, J. M., "Effect of Salt Concentration on the Aerobic Biodegradability of Sea Food Wastewater," J. Kor. Soc. Environ. Eng., 32(3), 256-263 (2010).
  6. Choi, Y. B., Kang, D. G., Park, S. S., Eum, K. H., Rim, J. M. and Kwon, J. H., "Removal of Nitrogen in Seafood Processing Wastewater Using High-rate Anaerobic Process and Nitritation-denitritation," J. Environ. Health Sci., 37(4), 315-322(2011). https://doi.org/10.5668/JEHS.2011.37.4.315
  7. Olivier, L. and Rene, M., "Treatment of organic pollution in industrial saline wastewater: a literature review," Water Res., 40, 3671-3682(2006). https://doi.org/10.1016/j.watres.2006.08.027
  8. Kincannon, D. F. and Gaudy, A. F., "Response of biological waste treatment systems to changes in salt concentrations," Biop-technol. Bioeng., 10, 483-496(1968).
  9. Shin, H. S., Bae, B. U., Oh, S. E. and Kim, H. R., "Preservative Characteristics of Anaerobic Granular Sludges," J. Kor. Soc. Environ. Eng., 15(3), 549-557(1993).
  10. Lee, H. M. and Yang, B. S., "The Effect of Upflow Velocity on Operating Characteristics in EGSB System," J. Kor. Soc. Environ. Eng., 19(10), 1245-1258(1997).
  11. Wu, W. M., Hu, J. C. and Gu, X. S., "Properties of Granular Sludge in Upflow Anaerobic Sludge Blanket (UASB) Reactors and Its Formation," Anaerobic Digestion 1985(ed. China State Biogas Association), Guangzhou, China., pp. 339-354 (1985).
  12. Shin, H. S., Bae, B. U., Paik, B. C. and Lee, J. J., "Anaerobic Digestion of Distillery Wastewater in a Two-phase UASB System," Water Res., 25, 361-371(1992).
  13. Jewell, W. J., Richards, B. K., Cummings, R. J. and White, T. E., "Methods for Kinetic Analysis of Methane Fermentation in High Solids Biomass Digesters," Biomass Bioenergy, 1(2), 65-73(1991). https://doi.org/10.1016/0961-9534(91)90028-B
  14. Moon, B. H., Yoon, C. H., Seo, G. T. and Kim, S. S., "Effects of C/N Ratio and Salt Concentration on Pollutant Removal in SBR," J. Kor. Soc. Environ. Eng., 24(2), 251-260 (2002).