• Title/Summary/Keyword: scratch resistance

Search Result 104, Processing Time 0.029 seconds

A Study on the Reduction of Dishing and Erosion Defects (텅스텐 CMP에서 디싱 및 에로젼 결함 감소에 관한 연구)

  • Jeong, Hae-Do;Park, Boum-Young;Kim, Ho-Youn;Kim, Hyoung-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.140-143
    • /
    • 2004
  • Chemical mechanical polishing(CMP) is essential technology to secure the depth of focus through the global planarization of wafer. But a variety of defects such as contamination, scratch, dishing, erosion and corrosion are occurred during CMP. Especially, dishing and erosion defects increase the resistance because they decrease the interconnect section area, and ultimately reduce the life time of the semiconductor. Due to this dishing and erosion must be prohibited. The pattern density and size in chip have a significant influence on dishing and erosion occurred over-polishing. Decreasing of abrasive concentration results in advanced pattern selectivity which can lead the uniform removal in chip and decrease of over-polishing. The fixed abrasive pad was applied and tested to reduce dishing and erosion in this paper. Consequently, reduced dishing and erosion was observed in CMP of tungsten pattern wafer with proposed fixed abrasive pad and chemicals.

  • PDF

Wear Behavior of TiN Coatings Deposited on High Speed Steel and Alloy Tool Steel (TiN 코팅된 고속도강과 합금공구강의 마멸거동)

  • 김석삼;서창민;박준목
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.705-712
    • /
    • 1995
  • The wear characteristics and wear mechanisms in TiN coating deposited on high speed steel and alloy tool steel by ion plating were investigated. Pin on V-block wear tester was used for a wear test method. The specimen was composed of three kinds of high speed steel and alloy tool steel which had different hardness by changing the heat treating condition. Three kinds of coating thickness were also applied to each specimen. Microscopic observation of worn surfaces was made by SEM. The scratch test of coating surface by the ion plating showed that critical load to break the coating interface was greater than 50N. The critical load increased with both substrate hardness and coating thickness. The wear resistance of TiN coated high speed steel became 10 times greater than that of non-coated ones. SEM observation showed that leading edge of contact was compressive and trailing edge was under maximum tensile stress and then surface cracking broke out perpendicular to sliding direction.

A Study on the Reduction of Dishing and Erosion Defects in Tungsten CMP (텅스텐 CMP에서 디싱 및 에로젼 결함 감소에 관한 연구)

  • Park Boumyoung;Kim Hoyoun;Kim Gooyoun;Kim Hyoungjae;Jeong Haedo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.38-45
    • /
    • 2005
  • Chemical mechanical polishing(CMP) has been widely accepted for the planarization of multi-layer structures in semiconductor fabrication. But a variety of defects such as abrasive contamination, scratch, dishing, erosion and corrosion are occurred during CMP. Especially, dishing and erosion defects increase the metal resistance because they decrease the interconnect section area, and ultimately reduce the lift time of the semiconductor. Due to this reason dishing and erosion must be prohibited. The pattern density and size in chip have a significant influence on dishing and erosion occurred by over-polishing. The fixed abrasive pad(FAP) was applied and tested to reduce dishing and erosion in this paper. The abrasive concentration decrease of FAP results in advanced pattern selectivity which can lead the uniform removal in chip and declining over-polishing. Consequently, reduced dishing and erosion was observed in CMP of tungsten pattern wafer with proposed FAP and chemicals.

Phase Characterization and Oxidation Behavior of Ti-Al-N and Ti-Al-Si-N Coatings (Ti-Al-N과 Ti-Al-Si-N 코팅막의 상 특성 및 내산화 거동)

  • Kim, Jung-Wook;Jeon, Jun-Ha;Cho, Gun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.152-157
    • /
    • 2004
  • Ti-Al-N ($Ti_{75}$ $Al_{25}$ N) and Ti-Al-Si-N ($Ti_{69}$ $Al_{23}$ $Si_{8}$N) coatings synthesized by a DC magnetron sputtering technique were studied comparatively with respect to phase characterization and high-temperature oxidation behavior. $Ti_{69}$ $Al_{23}$ $Si_{ 8}$N coating had a nanocomposite microstructure consisting of nanosized(Ti,Al,Si)N crystallites and amorphous $Si_3$$N_4$, with smooth surface morphology. Ti-Al-N coating of which surface $Al_2$$O_3$ layer formed during oxidation suppressed further oxidation. It was sufficiently stable against oxidation up to about $700^{\circ}C$. Ti-Al-Si-N coating showed better oxidation resistance because both surface Ab03 and near-surface $SiO_2$ layers suppressed further oxidation. XRD, GDOES, XPS, and scratch tests were performed.

A Study on The Ultra-precision Polishing Method of Co-Cr-Mo alloy Using MR Fluid Polishing (MR Fluid Polishing을 이용한 Co-Cr-Mo alloy의 초정밀 연마 방법)

  • Shin, Bong-Cheol;Kim, Byung-Chan;Song, Ki-Hyeok;Cho, Myeong-Woo
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.8-12
    • /
    • 2017
  • In general, metallic bio-materials is more widely used in solid tissue like bone or tooth than flexible tissue such as skin or muscle. Especially, Cobalt Chrome Molybdenum(Co-Cr-Mo), which is used in tooth surgery, has a great corrosion resistance. Because this bio-material is non-toxic in human body, and has a bio-compatibility that the vital reaction is not occurred with tissue in body. However the chemical reaction is occurred by fatal matter that deteriorate the property of material surface in conventional polishing, and it can affect to fatal disease in human body or decrease the material properties such as hardness, yield strength or bio-compatibility. This surface in poor condition can cause development of corrosion or bacteria. In this study, MR fluid polishing is used to minimize the scratch, pit or surface flaws generated in conventional polishing. Surface roughness is measured according to the polishing condition to obtain fine surface condition.

Wear properties of (Ti$_{1-x}$Cr$_{x}$)N coatings deposited by ion-plating method (이온 플레이팅법으로 제조한 (Ti$_{1-x}$Cr$_{x}$)N 박막의 마모특성에 관한 연구)

  • 이광희;박찬홍;이정중
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.125-134
    • /
    • 2001
  • ($Ti_{1-x}$ $Cr_{x}$ )N coatings were deposited by an ion-plating method in a reactor with two separate metal sources, Ti and Cr. Ti was evaporated using an electron beam, while Cr evaporation was carried out by resistant heating. The Ti and Cr concentrations in the coatings were controlled by the Ti and Cr evaporation ratio. The coating hardness increased with increasing the Cr content(x) and showed a maximum value of 6,000 HK at around x=0.8. The critical load of the coatings, measured by the scratch test, was around 30 N. The wear resistance properties of the ($Ti_{1-x}$$Cr_{ x}$)N coatings were evaluated using a CSEM pin-on-disk type tribometer. A Cr-steel ball as well as a SiC ball, which had hardness values of 590 HK and 2,600 HK respectively, were used as the pin. After the wear test, the surface morphology, roughness and the concentration of the coatings were investigated, with the main focus being on the effect of wear debris and the transferred layer on the wear behavior.

  • PDF

Preparation of UV-Curable Polyurethane Modified $Acrylate/SiO_2$ Hybrid Film Using Sol-Gel Process (졸-젤 공정을 이용한 광경화형 폴리우레탄 변형 아크릴레이트/실리카 하이브리드 필름의 제조)

  • Nam, Dae-Woo;Nam, Byeong-Uk;Cha, Bong-Jun;Kim, Baek-Jin
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.111-116
    • /
    • 2007
  • Polyurethane modified acrylate $(PUA)/SiO_2$ hybrid films were prepared by ultraviolet curing and their surface properties were investigated by hardness and adhesion test. The films were examined by the manipulation of mole-ratio of organic to inorganic components. Under the silica content controlled, highly desirable films were achieved and scratch resistance and hardness property of film were also enhanced, which indicates that the crosslinked silica particles are homogeneously dispersed within PUA film.

Effect of CrN barrier on fuel-clad chemical interaction

  • Kim, Dongkyu;Lee, Kangsoo;Yoon, Young Soo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.724-730
    • /
    • 2018
  • Chromium and chromium nitride were selected as potential barriers to prevent fuel-clad chemical interaction (FCCI) between the cladding and the fuel material. In this study, ferritic/martensitic HT-9 steel and misch metal were used to simulate the reaction between the cladding and fuel fission product, respectively. Radio frequency magnetron sputtering was used to deposit Cr and CrN films onto the cladding, and the gas flow rates of argon and nitrogen were fixed at certain values for each sample to control the deposition rate and the crystal structure of the films. The samples were heated for 24 h at 933 K through the diffusion couple test, and considerable amount of interdiffusion (max. thickness: $550{\mu}m$) occurred at the interface between HT-9 and misch metal when the argon and nitrogen were used individually. The elemental contents of misch metal were detected at the HT-9 through energy dispersive X-ray spectroscopy due to the interdiffusion. However, the specimens that were sputtered by mixed gases (Ar and $N_2$) exhibited excellent resistance to FCCI. The thickness of these CrN films were only $4{\mu}m$, but these films effectively prevented the FCCI due to their high adhesion strength (frictional force ${\geq}1,200{\mu}m$) and dense columnar microstructures.

Evaluation of Wear Characteristics on Ti/Cr PVD Coatings of Cold Press Die for the Forming of UHSS (초고장력강판 성형용 냉간 프레스 금형의 Ti/Cr계 PVD코팅에 대한 마모 특성 평가)

  • Heo, J.Y.;Youn, K.T.;Song, J.S.;Kang, I.S.;Yoon, I.C.;Park, C.D.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.186-193
    • /
    • 2022
  • The application of UHSS sheet is being expanded up to 50% to reduce the weight of automobiles and improve safety. However, due to the high strength and low elongation of the ultra-high tensile strength steel sheet, product defects such as spring back and mold defects such as cracks and chippings also occur. In this study, Pin/Ring on Disc and Spiral wear tests were conducted to evaluate the durability of Ti/Cr-coated molds for forming 1.2GPa grade UHSS sheets. Component analysis and thickness were measured for each coating layer, and hardness and adhesion were investigated to determine mechanical properties. Combining the results of various wear tests, it was found that the TiAlN coating had the best wear and sticking resistance.

ENHANCED ADHESION STRENGTH OF Cu/polyimide AND Cu/Al/polyimide BY ION BEAM MIXING

  • Chang, G.S.;Kim, T.G.;Chae, K.H.;Whang, C.N.;Zatsepin, D.S.;Kurmaev, E.Z.;Choe, H.S.;Lee, Y.P.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.122-126
    • /
    • 1997
  • the Cu/polyimide system is known to be the best candidate for a multilevel interconnection system due to the low resistance of Cu and to the low dielectric constant of polyimide respectively. Ion beam mixing of Cu(40nm)/polyimide was carried out at room temperature with 80 keV Ar+ and N2+ form $1.5\times$1015 to 15$\times$1015 ions/cm2. The quantitative adhesion strength was measured by a standard scratch test. X-ray photoelectron spectroscopy and x-ray emission spectrocopy are employed to investigate the chemical bonds and the interlayer compound formation of the films Cu/Al/polyimide showed more adhesion strength than Cu/polyimide after ion beam mixing and N2+ ions are more effective in the adhesion enhancement than Ar+ with the same sample geometry. The XES results shows the formation of interlayer compound of CuAl2O4 which can reflect more adhesive Cu/Al/polyimide which has not been reported previously. The latter results is understood by the fact that N2+ ions produce more pyridinelike moiety, amide group and tertiary amine moiety whcih are known as adhesion promotors.

  • PDF