• Title/Summary/Keyword: scratch resistance

Search Result 104, Processing Time 0.029 seconds

MECHANICAL PROPERTIES OF TIN COATED FILM WITH VARIOUS COATING THICKNESS ON TITANIUM ALLOY (타이타늄 합금에 다양한 두께로 코팅된 TiN 피막의 기계적 성질)

  • Lee, Jae-Yun;Oh, Dong-Joon;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.675-686
    • /
    • 2007
  • Statement of problem: Titanium nitride(TiN) coatings are the most general and popular coating method and used to improve the properties of metallic surface for industrial purposes. When TiN coating applied to the abutment screw, frictional resistance would be reduced, as a results, the greater preload and prevention of the screw loosening could be expected. Purpose: The purpose of this study was to investigate mechanical properties of TiN coated film of various coating thickness on the titanium alloy surface and to evaluate proper coating thickness. Material and method: 95 Titanium alloy (Ti-6Al-4V) discs of 15 mm in diameter and 3 mm in thickness were prepared for TiN coating and divided into 7 groups in this study. Acceding to coating deposition time (CDT) with TiN by using Arc ion plating, were divided into 7 groups : Group A (CDT 30min), Group B (CDT 60min), Group C (CDT 90min), Group D (CDT 120min), Group E (CDT 150min), Group F(CDT 180min) and Group G (no CDT) as a control group. TiN coating surface was observed with Atomic Force Microscope(AFM), field emission scanning electron microscopy(FE-SEM) and examined with scratch tester, wear tester. Result: 1. Coating thickness fir each coated group was increased in proportion to coating deposition time. 2. Surface of all coated groups except Group A was homogeneous and smooth. However, surface of none coated Group G had scratch. 3. Adhesion strength for each coated group was increased in proportion to coating deposition time. 4. Wear resistance for each coated group was increased in proportion to coating deposition time. 5. Surface roughness in Group A, B, C was increased in proportion to coating deposition time. But, surface roughness in Group D, E, F was showed decreased tendency in proportion to coating deposition time. Conclusion: According to coating deposition time, mechanical properties of TiN coated film were changed. It was considered that 120 minutes coating deposition time ($1.32{\mu}m$ in coating thickness) is necessary.

Development of 121 pins/mm2 High Density Probe Card using Micro-spring Architecture (마이크로 스프링 구조를 갖는 121 pins/mm2 고밀도 프로브 카드 제작기술)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.749-755
    • /
    • 2007
  • Recently, novel MEMS probe cards can support reliable wafer level chip test with high density probing capacity. However, manufacturing cost and process complexity are crucial weak points for low cost mass production. To overcome these limitations, we have developed micro spring structured MEMS probe card. For fabrication of micro spring module, a wire bonder and electrolytic polished gold wires are used. In this case, stringent tension force control is essential to guarantee the low level contact resistance of micro spring for reliable probing performance. For this, relation between tension force of fabricated probe card and contact resistance is characterized. Compare to conventional probe cards, developed MEMS probe card requires fewer fabrication steps and it can be manufactured with lower cost than other MEMS probe cards. Also, due to the small contact scratch patterns, we expect that it can be applied to bumping types chip test which require higher probing density.

Structure & Mechanical Behavior of TiCN Thin Films by rf Plasma Deposition (RF Plasma법으로 증착된 TiCN박막의 구조 및 기계적 거동에 관한 연구)

  • Baeg, C.H.;Park, S.Y.;Hong, J.W.;Wey, M.Y.;Kang, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.2
    • /
    • pp.91-97
    • /
    • 2000
  • The structure and mechanical properties of TiN and TiCN thin films deposited on STD61 steel substrates by the RF-sputtering methods has been studied by using XPS, XRD, micro-hardness tester, scratch tester, and wear-resistance tester. XPS results showed that the TiCN thin film formed with chemical bonding state. The TiN thin films grew with (111) orientation having the lowest strain energy by compressive stress, whereas the TiCN thin films grew with both (111) and (200) orientation, but (200) orientation having the lowest surface energy becomes dominant as carbon contents increase. The pre-etching treatment of substrate did not affect on the preferred orientation of thin films, but it played an important role in improving mechanical properties of thin films such as the hardness, adhesion and wear- resistance. Especially, the TiCN thin films showed the superior wear resistances due to high hardness and low friction coefficient compared with TiN thin films.

  • PDF

Study on the Adhesion of Diamond Like Carbon Films Using the Linear Ion Source with Nitriding Layers (Linear Ion Source에 의해 증착된 Diamond-Like Carbon(DLC) 박막의 질화층 형성에 따른 밀착력 특성 연구)

  • Shin, Chang-Seouk;Park, Min-Seok;Kwon, Ah-Ram;Kim, Seung-Jin;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.190-195
    • /
    • 2011
  • Diamond-like carbon (DLC) has many outstanding properties such as low friction, high wear resistance and corrosion resistance. However, it is difficult to achieve enough adhesion on the metal substrates because of weak bonding between DLC film and the metal substrate. The purpose of this study is to enhance an adhesion of DLC film. For improving adhesion, the substrate was treated by active screen plasma nitriding before DLC film deposing. Nitrided substrates were investigated by Glow Discharge Spectrometer (GDS), Micro-Vickers Hardness. DLC films were deposited on several metals by linear ion source, and characteristics of the films were investigated using nano-indentation, Field Emission Scanning Electron Microscope (FESEM). The adhesion was measured by scratch tester. The adhesion of DLC films was increased when nitriding layer was formed before DLC deposition. Therefore, the adhesion of DLC film can be enhanced as increasing the hardness of materials.

Corrosion Behaviors of ZrN Coated on Dental Co-Cr Alloys (ZrN 코팅된 치과 주조용 Co-Cr 합금의 부식거동)

  • Lee, Sang-Hun;Nah, Jung-Sook;Jang, Jae-Young
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.343-352
    • /
    • 2013
  • Purpose: The purpose of this study was to investigate to effect of the ZrN coated on corrosion resistance and physical property of dental Co-Cr alloys using various instruments. Methods: The specimens were used, respectively, for experiment, Arc Ion plating was carried out for dental casting alloys using ZrN coated materials with nitrogen gas. ZrN coated surface of each specimen was observed with field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), vickers hardness tester, and electrochemical tester. Results: The current density of ZrN coated specimen was smaller than that of non-coated specimen in 0.9% NaCl solution. Pit nucleated at scratch of specimen. The pitting corrosion resistant |$E_{max}-E_{rep}$| increased in order of ZrN coated (110 mV), and non-coated wire (100 mV). Conclusion: The corrosion potential of the ZrN coated specimen was comparatively high. the surface of ZrN coated specimen was more smooth than that of other kinds of non-coated specimen. ZrN coated surface showed higher hardness than that of non-coated surface.

Synthesis of WC-CrN superlattice film by cathodic arc ion plating system

  • Lee, Ho. Y.;Han, Jeon. G.;Yang, Se. H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.421-428
    • /
    • 2001
  • New WC-CrN superlattice film was deposited on Si substrate (500$\mu\textrm{m}$) using cathodic arc ion plating system. The microstructure and mechanical properties of the film depend on the superlattice period (λ). In the X-ray diffraction analysis (XRD), preferred orientation of microstructure was changed according to various superlattice periods(λ). During the Transmission Electron Microscope analysis (TEM), microstructure and superlattice period (λ) of the WC - CrN superlattice film was confirmed. Hardness and adhesion of the deposited film was evaluated by nanoindentation test and scratch test, respectively. As a result of nanoindentation test, the hardness of WC - CrN superlattice film was gained about 40GPa at superlattice period (λ) with 7nm. Also residual stress with various superlattice period (λ) was measured on Si wafer (100$\mu\textrm{m}$) by conventional beam-bending technique. The residual stress of the film was reduced to a value of 0.2 GPa by introducing Ti - WC buffer layers periodically with a thickness ratio ($t_{buffer}$/$t_{buffer+superlattice}$ ). To the end, for the evaluation of oxidation resistance at the elevated temperature, CrN single layer and WC - CrN superlattice films with various superlattice periods on SKD61 substrate was measured and compared with the oxidation resistance.

  • PDF

The Effect of Aluminum Element on the Surface Properties of CrAlN Coating Film Deposited via Arc Ion Plating ( Arc Ion Plating으로 증착된 CrAlN 코팅막의 표면 특성에 미치는 Al 원소의 영향 )

  • Jae-Un Kim;Byeong-Seok Lim;Young-Shin Yun;Byung-Woo Ahn;Han-Cheol Choe
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.1
    • /
    • pp.14-21
    • /
    • 2024
  • For this study, CrAlN multilayer coatings were deposited on SKD61 substrates using a multi-arc ion plating technique. The structural characteristics of the CrAlN multilayer coatings were evaluated using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Additionally, the adhesion of the coatings was assessed through scratch testing, and the mechanical strength was evaluated using nanoindentation and tribometric tests for frictional properties. The results show that the CrAlN multilayer coatings possess a uniform and dense structure with excellent mechanical strength. Hardness measurements indicated that the CrAlN coatings have high hardness values, and both the coating adhesion and wear resistance were found to be improved compared to CrN. The addition of aluminum is anticipated to contribute to enhanced durability and wear resistance.

Investigated properties of Low temperature curing Ag Paste for Silicon Hetero-junction Solar Cell

  • Oh, Donghyun;Jeon, Minhan;Kang, Jiwoon;Shim, Gyeongbae;Park, Cheolmin;Lee, Youngseok;Kim, Hyunhoo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.160-160
    • /
    • 2016
  • In this study, we applied the low temperature curing Ag paste to replace PVD System. The electrode formation of low temperature curing Ag paste for silicon Hetero-junction solar cells is important for improving device characteristics such as adhesion, contact resistance, fill factor and conversion efficiency. The low temperature curing Ag paste is composed various additives such as solvent, various organic materials, polymer, and binder. it depends on the curing temperature conditions. The adhesion of the low temperature curing Ag paste was decided by scratch test. The specific contact resistance was measured using the transmission line method. All of the Ag electrodes were experimented at various curing temperatures within the temperature range of $160^{\circ}C-240^{\circ}C$, at $20^{\circ}C$ intervals. The curing time was also changed by varying the conditions of 10-50min. In the optimum curing temperature $200^{\circ}C$ and for 20 min, the measured contact resistance is $19.61m{\Omega}cm^2$. Over temperature $240^{\circ}C$, confirmed bad contact characteristic. We obtained photovoltaic parameter of the industrial size such as Fill Factor (FF), current density (Jsc), open-circuit voltage (Voc) and convert efficiency of up to 76.2%, 38.1 mA/cm2, 646 mV and 18.3%, respectively.

  • PDF

Study on the Improvement of Physicochemical Properties of PEDOT-Metal Oxide Composite Thin Film by Vapor Phase Polymerization (기상중합법으로 제조된 Poly(3,4-ethylenedioxythiophene)(PEDOT)-금속산화물 복합 박막의 물리화학적 물성 향상에 관한 연구)

  • Nam, Mi-Rae;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.599-605
    • /
    • 2012
  • The physicochemical properties such as surface hardness, solvent mechanical wear resistance, and resistance to scratch properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin film prepared by vapor phase polymerization (VPP) was effectively improved by post-treatment of various metal alkoxide sol solutions. Metal oxide layer derived from sol-gel process of metal alkoxide was generated on the PEDOT thin film layer by VPP, resulting in improving mechanical properties of the conductive thin films without any deterioration of their original surface resistance. Several kinds of silicone and titanium alkoxide derivatives with various functional groups were used as metal alkoxide sol sources. Among them, PEDOT-metal oxide composite thin film derived tetraethyl orthosilicate showed the best performance in the terms of surface resistance, transmittance, and various physicochemical properties. The effect of metal alkoxide content in washing solution, oxidant content and drying temperature have been investigated in order to optimize the various properties of PEDOT-metal oxide composite thin film.

The electrochemical properties of PVD-grown WC-( $Ti_{1-x}$A $I_{x}$)N multiplayer films in a 3.5% NaCl solution

  • Ahn, S.H.;Yoo, J.H.;Kim, J.G.;Lee, H.Y.;Han, J.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2001
  • WC-( $Ti_{1-x}$ A $l_{x}$) N coatings of constant changing Al concentration were deposited on S45C substrates by high-ionization sputtered PVD method. The Al concentration could be controlled by using evaporation source for Al and fixing the evaporation rate of the metals (i.e, WC- $Ti_{0.86}$A $l_{0.14}$N, WC- $Ti_{0.72}$A $l_{0.28}$N, and WC- $Ti_{0.58}$A $l_{0.42}$N). The corrosion behavior of WC-( $Ti_{1-x}$ A $l_{x}$)N coatings in a deaerated 3.5% NaCl solution was investigated by electrochemical corrosion tests and surface analyses. The measured galvanic corrosion currents between coating and substrate indicated that WC- $Ti_{0.72}$A $l_{0.28}$N coating showed the best resistance of the coating tested. The results of potentiodynamic polarization tests showed that the WC- $Ti_{0.72}$A $l_{0.28}$N coating deposited with 32W/c $m^2$ of Al target revealed higher corrosion resistance. This indicated that the WC- $Ti_{0.72}$A $l_{0.28}$N coating is effective in improving corrosion resistance. In EIS, the WC- $Ti_{0.72}$A $l_{0.28}$N coating showed one time constant loop and increased a polarization resistance of coating ( $R_{coat}$) relative to other samples. Compositional variations of WC-( $Ti_{1-x}$ A $l_{x}$)N coatings were analyzed by EDS and XRD analysis was performed to evaluate the crystal structure and compounds formation behavior. Surface morphologies of the films were observed using SEM and AFM. Scratch test was performed to measure film adhesion strength.strength. adhesion strength.strength.

  • PDF