• Title/Summary/Keyword: scientific thinking skills

Search Result 95, Processing Time 0.02 seconds

The Relationship between Conservation Reasoning and Functional Prefrontal Lobe in Elementary School Students (초등학교 저학년 학생의 전두엽연합령의 기능과 보존논리 형성과의 관계에 대한 연구)

  • Kim, Young-Shin;Kwon, Yong-Ju;Bae, Yoon-Ju;Jeong, Jin-Su;Jeong, Wan-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.417-428
    • /
    • 2004
  • Conservation reasoning makes operational thought possible as a functional tool and it is the essential concept not only in the area of science and mathematics but also in several aspects of daily life. The abilities to solve mathematical problems and that of scientific reasoning and abstract way of thinking depend on whether thereis conservation reasoning or not and they are critical concepts that enables us to confirm the steps of cognitive development. Therefor in the study, we emphasized the issue that is the ways to speed up the scientific era by analyzing the correlation between the formation of conservation reasoning and neuro-cognitive variables. About 50% of 1-3 grade students did not had conservation reasoning skills. The formation of conservations was not linear. Scientific reasoning ability, planing and inhibiting ability were significantly different in levels of conservation, And, conservation reasonings were significantly correlated with cognitive variables. Scientific reasoning and planning ability significantly explained about 20% of the conservation reasoning ability of 1-3 grades.

Use of Multimedia Technologies in Extra-Curricular Works in Order to Improve the Quality of Training of Future Specialists

  • Tverezovska, Nina;Kovbasa, Tetiana;Pryhalinska, Tetiana;Mykhniuk, Serhii;Lopushan, Tetiana;Radionova, Olena;Kuchai, Tetiana
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.35-42
    • /
    • 2022
  • The article deals with the role of extra-curricular work by means of multimedia technologies in order to improve the quality of training of future specialists. An important condition for achieving high results in training specialists is the optimal combination of classroom and independent extra-curricular work of students by means of multimedia technologies. Very significant is the development of student independence, the formation of skills of independent search activity, the ability to take responsibility, independently solve a problem, find constructive solutions, a way out of a crisis situation, and so on. Extra-curricular work forms students' ability to master the techniques of analysis, synthesis, generalization, comparison; develops flexibility of thinking; opens up opportunities for the development and stabilization of positive learning motives to activate the process of mastering knowledge by means of multimedia technologies as a means of forming the personality of a highly qualified specialist. The concept of multimedia as one of the priority areas of Information Technology, which plays a particularly important role in the process of informatization of education, is revealed, and its advantages in education are shown. The advent of multimedia systems optimizes transformations in education, in many areas of professional activity, science, art, etc. The necessity of distance learning to improve the quality of training of future specialists using multimedia technologies in extra-curricular work is justified. The effectiveness of pedagogical support in the process of distance learning is achieved by the following conditions, which is revealed in the article. Various forms and types of extra-curricular work of students that are used in the modern practice of the educational environment of a higher education institution are described. Scientific and informational activity is considered a key area of information activity. The analysis of scientific and information activities in the field of education allows us to identify its main functions, which emphasize the growing role of scientific information in the education system, in particular, extra-curricular work using multimedia technologies. Operational, complete, accurate, targeted information that meets objective and subjective needs becomes an important link between the field of management, science and practice.

An Analysis of the Characteristics of Teachers' Adaptive Practices in Science Classes (과학 수업에서 교사의 적응적 실행의 특징 분석)

  • Heekyong Kim;Bongwoo Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.4
    • /
    • pp.403-414
    • /
    • 2023
  • In this study, we examined the adaptive practices of science teachers in their classrooms and their perspectives on the distinguishing features of these practices within science subjects. Our analysis comprised 339 cases from 128 middle and high school science teachers nationwide, and 199 cases on the characteristics of adaptive practices in science disciplines. The primary findings were as follows: First, the most significant characteristic of adaptive practice in science disciplines pertained to experimental procedures. Within the 'suggestion of additional materials/activities' category, the most frequently cited adaptive practice, teachers incorporated demonstrations to either facilitate student comprehension or enhance motivation. Additionally, 'experimental equipment manipulation or presentation of inquiry skills' emerged as the second most common adaptive practice related to experiments. Notably, over 50% of teacher responses regarding the characteristics of adaptive practices in science pertained to experiment guidance. Second, many adaptive practices involving difficulties experienced by students in learning situations were presented, particularly in areas such as numeracy and literacy. Many cases were related to the basic ability of mathematics used as a tool in science learning and understanding scientific terms in Chinese characters. Third, beyond 'experiment guidance', the characteristic adaptive practices of science subjects were related to 'connections between scientific theory and the real world', 'misconception guidance in science', 'cultivation of scientific thinking', and 'convergence approaches'. Fourth, the cases of adaptive practice presented by the science teachers differed by school level and major; therefore, it is necessary to consider school level or major in future research related to adaptive practice. Fifth, most of the adaptive action items with a small number of cases were adaptive actions executed from a macroscopic perspective, so it is necessary to pay attention to related professionalism. Finally, based on the results of this study, the implications for science education were discussed.

Perspectives of College Students and High School Science Teachers on Factors Affecting College Science Learning (대학 과학 학습에 영향을 주는 요인에 대한 대학생과 고등학교 과학교사의 인식)

  • Hong, Mi-Young;Kang, Nam-Hwa;Kim, Joo-Ah
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.875-881
    • /
    • 2011
  • This study examined factors influencing college science learning from the perspectives of college students and high school science teachers. Using a survey created based on focus group interviews, college science majors and high school science teachers rated various factors of high school learning that positively influenced college science learning. Findings suggested that the perceptions differed by college major: the physics major students considered math proficiency and logical thinking skills as the important factors; chemistry major students and biology major students considered English proficiency and basic scientific knowledge as the most important factors. Both college students and science teachers emphasized basic science knowledge and math proficiency. However, differences between the two groups were also found in that the students perceived more need to learn about experimentation than the teachers whereas the teachers had a priority in increasing advanced science content.

The Creative Education for Digital Contents Production (창의적인 디지털 컨텐츠 개발을 위한 교육)

  • 김혜경
    • Archives of design research
    • /
    • v.16 no.4
    • /
    • pp.335-344
    • /
    • 2003
  • Creativity has become a buzzword in the 21s1 century to the extent that it is considered as one of the criteria for a nation's competitiveness. In the cultural industry, one of the industries with the highest growth potential, creativity is the decisive factor Nevertheless, we have to admit that there is a serious lack of this quality in the planning area. Everyone is born with creativity and creative way of looking at things can be developed through training and education. Most of universities now classify digital contents within the realm of design, therefore, emphasizing only the formal or the artistic side of it. However, the study of digital contents requires creative thinking processes that are oriented to problem-solving, for which one needs to put together his/her planning (socio-cultural), expressive (artistic) and technological (scientific) capabilities at the same time. Also, the education of digital contents should be focused not only on acquiring the knowledge and skills, but also on developing individual creativity and learning to increase one's creativity working in a team of an organization. For the environmental aspect, education for creativity should take into account social and cultural specificities of Korea. Therefore, continuous studies must be done to explore more concrete ways of developing creativity on the individual, organizational and environmental levels.

  • PDF

Analysis of the Curriculum for the Science Gifted Education Center Based on the Core Competency of Gifted Students (과학 영재 핵심 역량 기반의 과학영재교육원 교육 내용 분석)

  • Kim, Heekyong;Lee, Bongwoo
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1338-1346
    • /
    • 2018
  • The purpose of this study is to analyze the curriculum of a university-affiliated science gifted education center based on the core competencies and to suggest a direction for improving the education at the gifted education center. For this purpose, we set the 12 core competencies as follows: 6 cognitive competencies such as knowledge, creativity, scientific thinking ability, inquiry ability, problem solving ability and fusion ability, and 6 non-cognitive competencies such as task commitment, self-directed learning ability, motivation reinforcement and challenge, communication skills, collaboration ability and leadership. The curricula of the science gifted education centers reflect all the competencies, but some competencies are only potentially included in the contents of the programs. In this study, we present examples of education programs by each competences and suggest additional descriptions for the development of gifted education centers.

Innovative Approaches to Training Specialists in Higher Education Institutions in the Conditions of Distance Learning

  • Oksana, Vytrykhovska;Alina, Dmytrenko;Olena, Terenko;Iryna, Zabiiaka;Mykhailo, Stepanov;Tetyana, Koycheva;Oleksandr, Priadko
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.116-124
    • /
    • 2022
  • Information and communication technologies used in the social sphere are born due to the development of computer technologies. The main task of the distance learning process in higher education institutions is not to provide information, but to teach how to obtain and use it. The purpose of the article: to identify innovative approaches in the training of specialists in higher education institutions in the context of distance learning. Various innovative approaches to organizing the work of students of higher educational institutions in the context of distance learning are considered. Based on the conducted research, it is concluded that each of the approaches described by us outlines the study of the phenomenon of professional training of a specialist in the condition of distance learning. All the described approaches significantly contribute to the improvement of professional training of specialists, encourage students to self-improvement, professional development and enrich their professional competence in modern conditions. The emergence and spread of innovative technologies means not only a change in the activity itself and its inherent means and mechanisms of its implementation, but also a significant restructuring of goals, value orientations, specific knowledge, skills and abilities. Therefore, the current stage of the development of civilization, scientific and technological progress requires the emergence of such specialists who would have broad humanitarian thinking, would have good psychological training, would be able to build professional activities according to laws that take into account the relationship between economic productivity and creativity, as well as the desire of the individual for constant renewal, self-realization. Only such qualities will help you master the specifics of innovative technologies well. We see the prospects in the study of innovative approaches to training specialists in higher education institutions in the condition of distance learning in foreign countries.

Development of the Elementary Science Curriculum to Enhance Creative Problem-Solving Abilities: Theme Based Construction of Contents (창의적 문제해결력 신장을 위한 과학교육과정 개발 연구-주제 중심의 초등과학교육과정 내용구성-)

  • Cho, Youn-Soon;Choi, Kyung-Hee;Suh, Ye-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.4
    • /
    • pp.527-537
    • /
    • 1998
  • This article is a part of a research on the elementary science curriculum development to enhance creative problem-solving abilities. The components of the curriculum have been identified as 'scientific knowledge', 'process skills' & 'divergent/critical thinking'. Among these components, construction of the scientific knowledge that enables creative problem-solving abilities has been selected as an intensive research topic for the purpose of the present research. To avoid or to prevent the knowledge learned from separate facts and concepts, five themes have been selected so as to incorporate with all three areas of the elementary science curriculum, i.e., physical science, earth science and life science. The five themes are, 'structure', 'change', 'interaction', 'energy' and 'stability'. The contents of elementary science, which have been selected from the 3rd, 6th and 7th National Elementary Science curriculum, were reconstructed based on the five themes given above. The results of reconstruction are presented in the form of matrix, such that the vertical axis represents how the concepts are related within each domain of science, while the horizontal axis shows how the concepts are interconnected between domains of science. Therefore, based upon the five themes, individual or separate knowledge can be put into more unified knowledge so that contribution of knowledge transfer to new ones can be expected for leaners who will be creative in problem-solving. The process and products of the curriculum development as well as the background of the present research are described and discussed in detail.

  • PDF

The Effect of Writing a Weekly Report on the Self-directed Learning, Attitude toward science, and Academic achievement (주 단위 보고서 작성이 자기 주도적 학습 능력과 과학에 대한 태도 및 학업 성취도에 미치는 영향)

  • Kim, Mijung;Woo, AeJa
    • Journal of Science Education
    • /
    • v.39 no.2
    • /
    • pp.165-179
    • /
    • 2015
  • In this study, the effects of writing a weekly report on the students' self-directed learning, the attitudes toward science, and the academic achievements were examined. Two hundred and three students, second graders of a high school participated. Experimental group performed writing a weekly report, while the comparative group performed regular science lessons. The results of this study are as follows: First, MSLQ test showed that there was statistically significant difference in the self-directed learning skills(p<.05). For sub-factors of motivation region, such as internal goals, extrinsic goals, learning beliefs, task value, and self-efficacy and for sub-factors of learning strategy region, such as meta-cognition, peer learning, time management, critical thinking, and demonstrations showed statistically significant results. Second, TOSRA test showed that there was no statistically significant difference in the attitudes toward science (p>.05). However, for sub-factors, such as scientific inquiry and joy to science class showed statistically significant results. Third, there was no statistically significant difference in the academic achievement in Chemistry I class (p>.05). However, top and low achievement level showed statistically significant results.

  • PDF

Development and Application of a Turtle Ship Model Based on Physical Computing Platform for Students of Industrial Specialized High School (공업계 특성화고 학생을 위한 피지컬 컴퓨팅 플랫폼 기반의 모형 거북선 개발 및 적용)

  • Kim, Won-Woong;Choi, Jun-Seop
    • 대한공업교육학회지
    • /
    • v.41 no.2
    • /
    • pp.89-118
    • /
    • 2016
  • In this study, the model of Turtle Ship, which is evaluated as one of the world's first ironclad ship in battle as well as the traditional scientific and technological heritage in Korea, was combined with the Physical Computing Platform(Arduino and App Inventor) that enables students to learn the basic concepts of IT in an easy and fun way. Thus, this study contrived the Physical Computing Platform-based Turtle Ship model which will make the students of Industrial Specialized High School develop the technological literacy and humanities-based knowledge through flexible education out of stereotype and single subject as well as enhance the potential of creative convergence education. The following is a summary of the main results obtained through this study: First, Arduino-based Main-controller design and making is helpful to learn of the hardware and software knowledge about EEC(Electron Electronics Control) and to confirm the basic characteristics and performance of interaction of Arduino and actuators. Second, The fundamental Instructional environments of abilities such as implementing EEC systems, thinking logically, and problem-solving skills were provided by designing of pattern diagram, designing an actuator circuit and making, the creation of sketches as technical programming and developing of mobile app. Thirdly, This is physical computing platform based Turtle ship model that will enable students to bring up their technological literacy and interest in the cultural heritage.