• Title/Summary/Keyword: science-based technologies

Search Result 1,750, Processing Time 0.037 seconds

A Study on Technology Assessment Factors and Direction of Progress for New Technologies in South Korea (우리나라 신기술 기술영향평가 핵심요소와 발전 방향에 대한 연구)

  • Wonju Hwangbo;Youngil Park
    • Journal of Technology Innovation
    • /
    • v.31 no.2
    • /
    • pp.173-214
    • /
    • 2023
  • Investments in new technologies have grown significantly in size, and science and technology have a large and complex impact on society at large. With people's great interest in technology, the government has the duty to accurately assess the influence of new technologies on society to facilitate their acceptance in society. For this purpose, technology impact assessment should be performed to facilitate a social consensus. There has been research on the initial methods of technology assessment for 50 years. Following various academic studies and discussions based on numerous new technology response policies, coupled with the examination of trends and changes over time, academia and policymakers around the world have paid attention to the multilateral analysis of the impact of new technologies on future society. This study focuses on research changes such as the stage of forecasting factors that should consider the technology assessment of new technologies, despite differences between the development methods for the assessment between developed countries and South Korea. The analysis yielded three factors of technological understanding of awareness, professionalism, and gender characteristics, in addition to a previously identified factor. The three factors are then suggested as forecasting factors for new technology. The findings of this study provide both academic and policy evidence for technology assessment based on the country's Framework Act on Science and Technology.

Design of Urban Transport Management System Based on Integrated Wireless LAN Technologies (통합 무선 기술 기반의 도시 교통 관리 시스템 설계)

  • Woo, Seok;Kim, Eun-Chan;Oh, Kyoung-Seok;Kim, Ki-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.99-100
    • /
    • 2007
  • Rapid developments of industry and economics have made a metropolis which demands an effective urban transport management system (UTMS). Specially, this paper considers a subway surveillance system based on integrated wireless LAN technologies for public safety. Since a current subway platform security entirely relies on conventional closed circuit television camera (CCTV) or human operators, subway train drivers cannot detect platform states and cope with abnormal situations or accidents immediately. However, through the IP cameras and some wireless routers, high qualify images of the platform conditions can be directly delivered to the train drivers and other station employees in advance of train entering the platform. In this paper, several design issues and problems are discussed when building up the subway management system. Further, we illustrate a system model with the system requirements in real parametric values in order to draw concrete system designs and to realize a practical implementation of the future UTMS.

  • PDF

Current status of new plant breeding technology and its efforts toward social acceptance (신식물육종기술의 현황과 사회적 수용을 위한 노력)

  • Jung, Yu Jin;Kim, Jong Mi;Park, Soo-Chul;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.299-305
    • /
    • 2018
  • Although new plant breeding technologies facilitate efficient plant breeding without introducing a transgene, they are creating indistinct boundaries in the regulation of genetically modified organisms (GMOs). The rapid advancement in plant breeding by genome-editing requires the establishment of a new global policy for the new biotechnology, while filling the gap between process-based and product-based GMO in terms of regulations. In this study recent developments in producing major crops using new plant breeding technologies were reviewed, and a regulatory model that takes into account the various methodologies to achieve genetic modifications as well as the resulting types of mutation were proposed. Moreover, the communication process were discussed in order to understand consumers' current situation and problems of new plant breeding technology, establish social acceptance well, and understand consumers' disputes such as GMO crops.

Cross-Technology Localization: Leveraging Commodity WiFi to Localize Non-WiFi Device

  • Zhang, Dian;Zhang, Rujun;Guo, Haizhou;Xiang, Peng;Guo, Xiaonan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3950-3969
    • /
    • 2021
  • Radio Frequency (RF)-based indoor localization technologies play significant roles in various Internet of Things (IoT) services (e.g., location-based service). Most such technologies require that all the devices comply with a specified technology (e.g., WiFi, ZigBee, and Bluetooth). However, this requirement limits its application scenarios in today's IoT context where multiple devices complied with different standards coexist in a shared environment. To bridge the gap, in this paper, we propose a cross-technology localization approach, which is able to localize target nodes using a different type of devices. Specifically, the proposed framework reuses the existing WiFi infrastructure without introducing additional cost to localize Non-WiFi device (i.e., ZigBee). The key idea is to leverage the interference between devices that share the same operating frequency (e.g., 2.4GHz). Such interference exhibits unique patterns that depend on the target device's location, thus it can be leveraged for cross-technology localization. The proposed framework uses Principal Components Analysis (PCA) to extract salient features of the received WiFi signals, and leverages Dynamic Time Warping (DTW), Gradient Boosting Regression Tree (GBRT) to improve the robustness of our system. We conduct experiments in real scenario and investigate the impact of different factors. Experimental results show that the average localization accuracy of our prototype can reach 1.54m, which demonstrates a promising direction of building cross-technology technologies to fulfill the needs of modern IoT context.

Web-based Real Environment Monitoring Using Wireless Sensor Networks

  • Lee, Gil-Jae;Kong, Jong-Uk;Kim, Min-Ah;Byeon, Ok-Hwan
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.207-210
    • /
    • 2005
  • Ubiquitous computing is one of the key technology areas in the "Project on Development of Ubiquitous computing and network technology" promoted by the Ministry of Science and Technology as a frontier business of the $21^{st}$ century in Korea, which is based on the new concept merging physical space and computer-based cyber space. With recent advances in Micro Electro Mechanical System (MEMS) technology, low cost and low-power consumption wireless micro sensor nodes have been available. Using these smart sensor nodes, there are many activities to monitor real world, for example, habitat monitoring, earthquake monitoring and so on. In this paper, we introduce web-based real environment monitoring system incorporating wireless sensor nodes. It collects sensing data produced by some wireless sensor nodes and stores them into a database system to analyze. Our environment monitoring system is composed of a networked camera and environmental sensor nodes, which are called Mica2 and developed by University of California at Berkeley. We have modified and ported network protocols over TinyOS and developed a monitoring application program using the MTS310 and MTS420 sensors that are able to observe temperature, relative humidity, light and accelerator. The sensed data can be accessed user-friendly because our environment monitoring system supports web-based user interface. Moreover, in this system, we can setup threshold values so the system supports a function to inform some anomalous events to administrators. Especially, the system shows two useful pre-processed data as a kind of practical uses: a discomfort index and a septicity index. To make both index values, the system restores related data from the database system and calculates them according to each equation relatively. We can do enormous works using wireless sensor technologies, but just environment monitoring. In this paper, we show just one of the plentiful applications using sensor technologies.

  • PDF

The Identified Self: Location-Based Technologies, Surveillance, and Non-place (식별되는 자: 위치기반기술, 원격성과 감시의 문제, 그리고 비-장소(non-place))

  • Yi, Doogab
    • Journal of Science and Technology Studies
    • /
    • v.16 no.2
    • /
    • pp.1-31
    • /
    • 2016
  • This essay examines the recent proliferation of location-based services (LBS) within the context the expansion of the technologies of remote identification, monitoring, and tracking. Following the spatial turn in the social sciences, this essay aims to analyze LBS as a surveillance technology that can re-shape the spatial configuration of its users and their identity. The analytic focus of this essay is on LBS within the global information infrastructure, and it utilizes key LBS examples in the US and South Korea. First, as a way to discuss the technical possibilities of LBS for spatial coordination and surveillance, this essay investigates its technical architecture in terms of information flow. It then discusses the issue of privacy in LBS by analyzing some of its key legal and regulatory issues. The combination of the global information infrastructure with location-related technologies has enabled LBS companies to expand the scope of surveillance over the ever-increasing computer-mediated activities, prompting heated discussions over whether LBS is capturing "Every Moment in Your Life." This essay concludes with a discussion on how location technologies have provided a key platform for the rise of surveillance capitalism through the creation of what Marc $Aug{\acute{e}}$ called a "non-place," a place where the identified self is constituted by LBS.

Chitin Nanofibers Characterization for Flexible/Transparent Films (유연/투명 필름을 위한 키틴 나노파이버 특성)

  • Hwang, Joong-Kook;Seo, Eung-soo;Chang, Sang-Mok;Shin, Hoon-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.797-801
    • /
    • 2015
  • In this study ensuring a filming technology is attempted through dispersion technologies and mixing polymer scaffolds in order to produce films based on the nanowaires obtained from chitin. In addition this study proposes technologies in measuring and improving characteristics of films produced using nanowires and for applying electric conductivity to the films as a chemical and physical manner. Also, a possibility in applications of mass productive films or substrates to producing flexible and transparent films is proposed. In the experiment implemented in this study, it is verified that developments of high strength, high transparency, and high flexibility films can be developed through combining it with producing flexible and transparent films.

A Study on Outlier Detection in Smart Manufacturing Applications

  • Kim, Jeong-Hun;Chuluunsaikhan, Tserenpurev;Nasridinov, Aziz
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.760-761
    • /
    • 2019
  • Smart manufacturing is a process of integrating computer-related technologies in production and by doing so, achieving more efficient production management. The recent development of supercomputers has led to the broad utilization of artificial intelligence (AI) and machine learning techniques useful in predicting specific patterns. Despite the usefulness of AI and machine learning techniques in smart manufacturing processes, there are many fundamental issues with the direct deployment of these technologies related to data management. In this paper, we focus on solving the outlier detection issue in smart manufacturing applications. More specifically, we apply a state-of-the-art outlier detection technique, called Elliptic Envelope, to detect anomalies in simulation-based collected data.

A Survey on Role of Block Chain in Smart Cities

  • Chokkanathan, K;Shanmugaraja, P;Ramasamy, Siva Shankar;Ouncharoen, Rujira;Chakpitak, Nopasit
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.1-7
    • /
    • 2021
  • An amazing growth in the field of Internet of Things (IoT) and Blockchain based smart cities from both industry and academia has been witnessed in the recent years. There are many smart applications such as intelligent transportation, smart banking, improving the life style of citizen, energy consumption and managing the waste in the city, handling home needs are supporting the Smart city concept. These applications are profoundly supported by the advanced technologies like Blockchain as well as IoT in the recent past. Smart cities can be supported by the Blockchain core concepts such as secure, transparent, decentralized and immutable nature. Still, Blockchain and IoT technologies implementation in smart cities are in their early stages and significant research efforts are desirable to integrate them. This review article explores the roles and responsibilities of Blockchain and IoT in building smart cities.

Self-powered Sensors based on Piezoelectric Nanogenerators

  • Rubab, Najaf;Kim, Sang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.293-300
    • /
    • 2022
  • Flexible, wearable, and implantable electronic sensors have started to gain popularity in improving the quality of life of sick and healthy people, shifting the future paradigm with high sensitivity. However, conventional technologies with a limited lifespan occasionally limit their continued usage, resulting in a high cost. In addition, traditional battery technologies with a short lifespan frequently limit operation, resulting in a substantial challenge to their growth. Subsequently, utilizing human biomechanical energy is extensively preferred motion for biologically integrated, self-powered, functioning devices. Ideally suited for this purpose are piezoelectric energy harvesters. To convert mechanical energy into electrical energy, devices must be mechanically flexible and stretchable to implant or attach to the highly deformable tissues of the body. A systematic analysis of piezoelectric nanogenerators (PENGs) for personalized healthcare is provided in this article. This article briefly overviews PENGs as self-powered sensor devices for energy harvesting, sensing, physiological motion, and healthcare.