• Title/Summary/Keyword: science modules

Search Result 958, Processing Time 0.028 seconds

ON Φ-FLAT MODULES AND Φ-PRÜFER RINGS

  • Zhao, Wei
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1221-1233
    • /
    • 2018
  • Let R be a commutative ring with non-zero identity and let NN(R) = {I | I is a nonnil ideal of R}. Let M be an R-module and let ${\phi}-tor(M)=\{x{\in}M{\mid}Ix=0\text{ for some }I{\in}NN(R)\}$. If ${\phi}or(M)=M$, then M is called a ${\phi}$-torsion module. An R-module M is said to be ${\phi}$-flat, if $0{\rightarrow}{A{\otimes}_R}\;{M{\rightarrow}B{\otimes}_R}\;{M{\rightarrow}C{\otimes}_R}\;M{\rightarrow}0$ is an exact R-sequence, for any exact sequence of R-modules $0{\rightarrow}A{\rightarrow}B{\rightarrow}C{\rightarrow}0$, where C is ${\phi}$-torsion. In this paper, the concepts of NRD-submodules and NP-submodules are introduced, and the ${\phi}$-flat modules over a ${\phi}-Pr{\ddot{u}}fer$ ring are investigated.

GRADED w-NOETHERIAN MODULES OVER GRADED RINGS

  • Wu, Xiaoying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1319-1334
    • /
    • 2020
  • In this paper, we study the basic theory of the category of graded w-Noetherian modules over a graded ring R. Some elementary concepts, such as w-envelope of graded modules, graded w-Noetherian rings and so on, are introduced. It is shown that: (1) A graded domain R is graded w-Noetherian if and only if Rg𝔪 is a graded Noetherian ring for any gr-maximal w-ideal m of R, and there are only finite numbers of gr-maximal w-ideals including a for any nonzero homogeneous element a. (2) Let R be a strongly graded ring. Then R is a graded w-Noetherian ring if and only if Re is a w-Noetherian ring. (3) Let R be a graded w-Noetherian domain and let a ∈ R be a homogeneous element. Suppose 𝖕 is a minimal graded prime ideal of (a). Then the graded height of the graded prime ideal 𝖕 is at most 1.

Enhancement of Blood Compatibility of Albumin-Immobilized Polyurethane

  • Gyu Ha Ryu;Don
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.269-274
    • /
    • 1992
  • In this paper, we describe the design methodology and specifications of the developed module-based bedside monitors for patient monitoring. The bedside monitor consists of a main unit and module cases with various parameter modules. The main unit includes a 12.1" TFT color LCD, a main CPU board, and peripherals such as a module controller, Ethernet LAN card, video card, rotate/push button controller, etc. The main unit can connect at maximum three module cases each of which can accommodate up to 7 parameter modules. They include the modules for electrocardiograph, respiration, invasive blood pressure, noninvasive blood pressure, temperature, and SpO2 with Plethysmograph.raph.

  • PDF

Severity-based Software Quality Prediction using Class Imbalanced Data

  • Hong, Euy-Seok;Park, Mi-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.73-80
    • /
    • 2016
  • Most fault prediction models have class imbalance problems because training data usually contains much more non-fault class modules than fault class ones. This imbalanced distribution makes it difficult for the models to learn the minor class module data. Data imbalance is much higher when severity-based fault prediction is used. This is because high severity fault modules is a smaller subset of the fault modules. In this paper, we propose severity-based models to solve these problems using the three sampling methods, Resample, SpreadSubSample and SMOTE. Empirical results show that Resample method has typical over-fit problems, and SpreadSubSample method cannot enhance the prediction performance of the models. Unlike two methods, SMOTE method shows good performance in terms of AUC and FNR values. Especially J48 decision tree model using SMOTE outperforms other prediction models.

Wireless Optical Fiber Interferometer Arterial Pulse Wave Sensor System (무선 기반의 광섬유 간섭계형 맥파센서 시스템)

  • Park, Jaehee;Shin, Jong-Dug
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.439-443
    • /
    • 2013
  • A wireless optical fiber interferometer arterial pulse wave sensor system is developed for remote sensing. The wireless optical fiber sensor system consists of Zigbee communication modules and an optical fiber interferometer arterial pulse wave sensor. The optical fiber arterial pulse wave sensor is an in-line Michelson interferometer enclosed with steel reinforcement in a heat-shrinkable tube. The Zigbee communication modules are composed of an ATmega128L microprocessor and a CC2420 Zigbee chip. The arterial pulse waves detected by the optical fiber sensor were transmitted and received via the Zigbee communication modules. The experimental results show that the wireless optical fiber sensor system can be used for monitoring the arterial pulse waves remotely.

RINGS AND MODULES WHICH ARE STABLE UNDER NILPOTENTS OF THEIR INJECTIVE HULLS

  • Nguyen Thi Thu Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.339-348
    • /
    • 2023
  • It is shown that every nilpotent-invariant module can be decomposed into a direct sum of a quasi-injective module and a square-free module that are relatively injective and orthogonal. This paper is also concerned with rings satisfying every cyclic right R-module is nilpotent-invariant. We prove that R ≅ R1 × R2, where R1, R2 are rings which satisfy R1 is a semi-simple Artinian ring and R2 is square-free as a right R2-module and all idempotents of R2 is central. The paper concludes with a structure theorem for cyclic nilpotent-invariant right R-modules. Such a module is shown to have isomorphic simple modules eR and fR, where e, f are orthogonal primitive idempotents such that eRf ≠ 0.

Development of a Consecutive Clinical Nursing Practicum Module using Simulation (시뮬레이션을 이용한 연속적 간호실습교육 모듈개발)

  • Suh, Eunyoung E.;Koh, Chinkang;Lee, Namju;Jung, Chaewon;Chae, Sunmi;Choi, Hee-Sung;Kim, Hyewon
    • Perspectives in Nursing Science
    • /
    • v.10 no.1
    • /
    • pp.24-31
    • /
    • 2013
  • Purpose: This is a project report of the development of consecutive clinical nursing practicum modules using simulation encompassing the essentials of nursing over 4 years of university level education. Methods: The project was conducted from May to December in 2011 in a college of nursing in Seoul, Korea. Six nursing faculty members from different major subjects at the university participated in the project. The theoretical framework was sought in the first phase, resulting in utilizing Neuman's Systems Model. The principles of developing the contents of and the links between the modules were set up in the second phase, presented as complexity, diversity, and comprehensiveness. The details in the individual module were fleshed out in the third phase. Results: Eight clinical nursing modules using simulation were developed and presented in a table in detail. The complexity, diversity, and comprehensiveness of each module increased in depth and breadth in a consecutive order. Conclusion: It is hoped that this module is a decent curricular exemplar demonstrating comprehensive nursing practice education using a simulation technique.

  • PDF

Design Technology Development of the 28 GHz Up and Down Converters (28 GHz 상향 및 하향변환기 설계기술 개발)

  • Na, Chae-Ho;Woo, Dong-Sik;Kim, Kang-Wook
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.366-370
    • /
    • 2003
  • This paper introduces a new design and fabrication technology of 28 GHz low-cost up and down converter modules for digital microwave radios, The design of the converter module is based on unit circuit blocks, which are to be characterized using a special test fixture. Based on the cascade analysis of the module the 28 GHz up and down converter modules have been designed and implemented. The measured module performance agrees with the cascade analysis. New components such as a tapped edge-coupled filter and a new Ka-band waveguide-to-microstrip transition, which are less sensitive to fabrication tolerances, have been used in the module implementation.

  • PDF

TEST MODEL OF MILLIMETER-WAVE IMAGING RADIOMETER EQUIPMENT (MIRAE)

  • Lee, Ho-Jin;Kim, Won-Gyum;Seong, Jin-Taek;Kim, Dae-Suk;Na, Kyoung-Tae;Jung, Min-Kyoo;Chang, Yu-Shin;Kim, Soon-Tae;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.365-368
    • /
    • 2007
  • Millimeter-wave (MMW) imaging radiometer systems have an attractive advantage to obtain an image through low visibility weather conditions such as fog, clouds and light rain compared with visible and infrared imaging systems. Many countries have developed a various kinds of MMW imaging radiometers for the aim of low cost and high performance. In Korea, Millimeter-wave Imaging RAdiometer Equipment (MIRAE) has been developed since the end of 2006. Recently the development of some modules was finished for the test model. This paper describes the design and development of the MIRAE. In addition, the test results of its manufactured modules are presented.

  • PDF

A Study on the Application of Deep Learning Model by Using ACR Phantom in CT Quality Control (CT 정도관리에서 ACR 팬텀을 이용한 딥러닝 모델 적용에 관한 연구)

  • Eun-Been Choi;Si-On Kim;Seung-Won Choi;Jae-Hee Kim;Young-Kyun Kim;Dong-Kyun Han
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.535-542
    • /
    • 2023
  • This study aimed to implement a deep learning model that can perform quantitative quality control through ACTS software used for quantitative evaluation of ACR phantom in CT quality control and evaluate its usefulness. By changing the scanning conditions, images of three modules of the ACR phantom's slice thickness (ST), low contrast resolution (LC), and high contrast resolution (HC) were obtained and classified as ACTS software. The deep learning model used ResNet18, implementing three models in which ST, HC, and LC were learned with epoch 50 and an integrated model in which three modules were learned with Epoch 10, 30, and 50 at once. The performance of each model was evaluated through Accuracy and Loss. When comparing and evaluating the accuracy and loss function values of the deep learning models by ST, LC, and HC modules, the Accuracy and Loss of the HC model were the best with 100% and 0.0081, and in the integrated model according to the Epoch value, Accuracy and Loss with epoch 50 were the best with 96.29% and 0.1856. This paper showed that quantitative quality control is possible through a deep learning model, and it can be used as a basis and evidence for applying deep learning to the CT quality control.