• Title/Summary/Keyword: science gifted high-school students

Search Result 238, Processing Time 0.022 seconds

Evaluation of Stated Models for the Floating and Sinking Phenomena in the Chemical Domain (화학영역에서 뜨고 가라앉는 현상에 대해 진술된 모델의 평가)

  • Kim, Sung-Ki;Park, Chul-Yong;Choi, Hee;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.226-234
    • /
    • 2018
  • In this study, the models described in the textbooks related to floating and sinking phenomena in the chemical domain were evaluated based on the aspect of nature related to the generation of models. To achieve this, we were targeting statement of textbooks from 7th curriculum to 2009 revised curriculum. Analysis of textbooks was performed for science of elementary school (total 2 textbooks) and science of middle school (total 21 textbooks) which dealt with these phenomena. According to the textbooks analysis, characteristics of statement way were (1) No description of the model's prerequisites, (2) Statement based matter viewpoint, (3) Lack of pattern principle, (4) Inadequacy of the case covered. Although the education about the model for the students should be preceded by the education related to the process of model creation rather than the activity using the model, the education about the nature of the model is insufficient. In order to solve this problem, we propose the model statement in textbooks and the development of the model evaluation tool related to model creation.

North Korean Defector Students' Science Learning in Angbuilgu Activity (앙부일구(仰釜日晷) 활동에서 드러난 탈북 학생들의 과학 학습)

  • Lee, Ji-Hye;Shin, Dong-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • The purpose of this study is to examine North Korean defector students' characteristics in science learning through their voice in an "Angbuilgu" program, one of the Korean traditional science knowledge (TSK). We compared them with two other groups of contrasting backgrounds. The Angbuilgu program contains meaningful questions of time, everyday-life knowledge, Korean TSK, and western modern science (WMS). The teaching strategy consists of interactions between teacher and students, and scientific experiments. We applied this program to three groups and analyzed: North Korean defector students, elementary science gifted students, high school students in an advanced class. The characteristics of their science learning show the following: First, their interpretation of time as nature itself in their everyday life. They have rich experience and are familiar with time in nature. Second, they prefer science with complementary, caring, and humanist perspectives, which is in contrast to other groups with preference to the updated and practical science. Third, they lack scientific concepts but possess an abundance of everyday-life knowledge. Their linguistic expressions are ordinary rather than scientific. Fourth, they are familiar with narrative thinking more than scientific thinking. The results show that the science program using Korean TSK can help them accept new scientific knowledge as well as cultural pride, which plays a role in reconfirming their identity as one ethnicity. We expect that the contents of Korean TSK can be an intercultural field between North Korean defector students and our science curriculum.

Gifted Middle School Students' Conceptual Change of an Enzyme by Using Systematic Analogies during the Interpretation of Experimental Results (실험 해석 과정에서 체계적 비유 사용에 의한 중학교 영재반 학생의 효소 개념 변화)

  • Lee, Won-Kyung;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.3
    • /
    • pp.212-224
    • /
    • 2007
  • Metabolism is one of the pivotal biology concepts, but many students have difficulty understanding it. The purposes of this study were (1) to explore 8th graders' conceptual change of an enzyme after classes of experimenting enzyme reaction and interpreting data using systematic analogies, (2) to discover the role of systematic analogies to enhance students' understanding, and (3) to explain students' difficulty understanding concepts as the ontological features. Systematic analogies were designed to encourage students to interpret their lab activities on enzyme reaction rates. Data were collected by using the pre-test and the post-test of open-ended form, students' worksheets, and interviews with students. After classes, the number of students to engender scientific conceptions about the function of enzyme, its structure, and its mechanism has increased. But more students failed to understand the reaction mechanisms having ontological features of equilibration processes than to understand the function of enzyme having ontological features of event-like processes. Even though the concepts of enzymes are hard to grasp owing to their ontological attributes of equilibration processes, a part of students' conceptions successfully progressed from the idea belonging to event-like processes to one belonging to equilibration processes. And systematic analogies were found to contribute in enhancing students' conceptual change of the enzyme reaction.

A study on the left/right brain utilization tendency of information prodigies (정보영재 학생의 좌·우뇌 활용 성향 연구)

  • Nam, Seun Kwon;Choi, Won Sik;Lim, Byoung Ung
    • 대한공업교육학회지
    • /
    • v.33 no.1
    • /
    • pp.23-43
    • /
    • 2008
  • The purpose of this study is to provide some necessary baseline data to the information prodigy related research through the study on the brain left/right tendency of information prodigies. Subjects were 298 gifted students(59 information, 79 mathematics, 80 science, 40 invention, 40 social science) and 114 general students summing up 412 in the schools of Daejeon metropolitan area. 'Brain Tendency Test' developed by Torrance and modified by Ko in Korean was used as a tool to measure the prodigies' brain tendencies. Data analysis has been done with the $x^2$ test of frequency with the alpha = .05. The results of this study are as follows. 1) The information gifted students have tendencies of utilizing right brain hemisphere at the most, both left/right brain(whole brain) utilization at the second, and left brain utilization at the last. 2) There was statistically no difference between information prodigies and general students in the left/right brain tendency. 3) There was statistically mild evidence to support the notion that there are some differences in the brain tendency between the group of information prodigies and the group of other area of the prodigies. The degree of inclination to utilize the whole brain hemisphere for the prodigies of the other area was the highest compare to other left/right brain utilization while the information prodigies tend to utilize the right brain hemisphere at the most. 4) The female information prodigies have tendencies of utilizing while brain area at the most, right brain utilization at the second, and left brain utilization at the last contrary to the brain utilization tendencies in the male information prodigies which are the same as the brain utilization tendencies of the information prodigies. However there was no difference in brain tendencies statistically between the two groups since the female subjects were too small.

Thermal Sensor Design Technique for FPGA Based Systems (FPGA 기반 시스템에서의 열 감지 센서 구현 기법)

  • Kim, Sun-Gyu;Kim, Yong-Ju;Kim, Tae-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06b
    • /
    • pp.298-302
    • /
    • 2008
  • 주어진 작은 크기의 칩 내부에 많은 기능 (예: 멀티미디어, 음성/영상 등)을 작동시키기 위해서는 고집적(high-integration)의 회로가 구현되게 된다. 이러한 고집적 회로는 작동할 때 상당한 양의 전력 소모를 유발하게 되어 결국 배더리 수명을 단축시키는 상황을 가지게 한다. 더욱 심각한 상황은 고 밀도의 칩 안에서의 많은 전력 소모는 열의 발생을 더욱 가속화 시키게 되며, 결국 칩 작동의 신뢰성(reliability)을 상당히 잃게 만든다. 본 연구에서는 칩의 작동에 따른 열 발생으로 유발되는 칩의 온도 상승을 감지하는 센서회로 구현에 관한 것이다. FPGA 칩은 주 목적의 기능을 수행하는 회로들을 구현함과 동시에 추가적으로 열 감지 센서 회로를 구현할 자원을 FPGA가 제공을 해 주어야 하는데, 주목적의 회로 공간(즉, 자원) 사용으로 인해 열 센서 회로 구현 자원이 충분하지 않을 경우나 여러 지역에 사용 가능한 자원이 소규모로 흩어진 경우 등 센서 구현을 위한 자원 탐색 및 구현 가능성에 대해 점검하는 알고리즘이 필요하다. 본 연구는 이러한 알고리즘을 개발하여 그 효용성을 실험을 통해 보이고 있다. 제안한 알고리즘의 특징은 Branch-and-Bound에 기반을 두고 있으며, 알고리즘의 수행 시간 단축을 위한 효과적인 search tree pruning 기법을 제안하고 있다.

  • PDF

Key Stages of a Research and Students' Epistemic Agency in a Student-Driven R&E (학생 주도의 R&E 활동에서 드러나는 연구 활동의 주요 단계 및 학생의 인식적 행위주체성)

  • Lee, Minjoo;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.4
    • /
    • pp.511-523
    • /
    • 2019
  • In this age of the $4^{th}$ industrial revolution, we, science educators, are giving more light on students' agentic behavior in the process of educating future scientist. This study, with the analytic lens of epistemic agency, explores the key stages of a student-driven R&E program rather than the scientist-led R&E program. It also examines to understand the emergence of students' epistemic agency in each stage of R&E. Data from participant observation for 18 months and in-depth interviews were collected and analyzed with the constant comparative method of grounded theory. This study identifies and describes five key stages of student-driven R&E: The stage of exploring research theme, designing research, performing lab activity, interpreting results, and communicating research. It also finds that (a) students' epistemic agency emerged with the constant interactions with the R&E structure; (b) students' epistemic agency has deep relations with the epistemic beliefs of the students; (c) students positioned themselves as decision-makers in the R&E practice; (d) the redistributed power and authority of the R&E contributed to the emergence of students' epistemic agency.

Investigation of Mental Models about Tide for Scientifically Talented Middle School Students by Analyzing Facet of Conceptual Types by Context (상황에 따른 개념 유형의 국면 분석을 통한 중학교 과학 영재아들의 조석에 관한 정신모형 탐색)

  • Lee, Ki-Young
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.6-14
    • /
    • 2006
  • The study investigates mental models of scientifically gifted, middle school students when it comes to tides. This was done by analyzing facet of conceptual types for two contexts. We carried out two performance tasks of tide with different context. A large number of students showed different conceptual types by context. As a result of analyzing facet of conceptual types by context, there was a slight difference in content-specific facet, but a remarkable one in strategic facet. We classified four mental models about tide by configuring facets of conceptual types: (1) Tide model (2) Force model (3) Phase model (4) Hybrid model. The Tide model is scientifically accepted model, but Force model and Phase model are incorrect models, and Hybrid model is mixed model. In cases of Force model and Phase model, conceptual types concur with each other, but these types of students comprehend tides as a result of joined forces of Moon & Sun and phase change of Moon, respectively. Arranging low mental models in proportional order, Tide model (45.0%), Hybrid model (30.0%), Force model (12.5%), and Phase model (7.5%).

Students' Problem Solving Based on their Construction of Image about Problem Contexts (문제맥락에 대한 이미지가 문제해결에 미치는 영향)

  • Koo, Dae Hwa;Shin, Jaehong
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.1
    • /
    • pp.129-158
    • /
    • 2020
  • In this study, we presented two geometric tasks to three 11th grade students to identify the characteristics of the images that the students had at the beginning of problem-solving in the problem situations and investigated how their images changed during problem-solving and effected their problem-solving behaviors. In the first task, student A had a static image (type 1) at the beginning of his problem-solving process, but later developed into a dynamic image of type 3 and recognized the invariant relationship between the quantities in the problem situation. Student B and student C were observed as type 3 students throughout their problem-solving process. No differences were found in student B's and student C's images of the problem context in the first task, but apparent differences appeared in the second task. In the second task, both student B and student C demonstrated a dynamic image of the problem context. However, student B did not recognize the invariant relationship between the related quantities. In contrast, student C constructed a robust quantitative structure, which seemed to support him to perceive the invariant relationship. The results of this study also show that the success of solving the task 1 was determined by whether the students had reached the level of theoretical generalization with a dynamic image of the related quantities in the problem situation. In the case of task 2, the level of covariational reasoning with the two varying quantities in the problem situation was brought forth differences between the two students.

Exploring Learning Progression of Logical Thinking in Acid and Base Chemical Reactions (산과 염기 화학반응에서 논리 사고 학습발달단계 탐색)

  • Park, Chulyong;Kim, Sungki;Choi, Hee;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.5
    • /
    • pp.376-386
    • /
    • 2019
  • The purpose of this study was to explore the learning progression of logical thinking in acid and base chemical reactions and to evaluate its validity. For this purpose, we collected 387 participants in 9 schools of elementary, middle and high schools nationwide. The questionnaire developed in this study was composed of nine items. The questionnaire presented the acid and base reactants and products, and the students pictured their thoughts on how these substances change, and answered the reasons of their thoughts. Situation contexts of the questionnaire were divided into two groups: one kind of solute dissolved in a solvent, and two kinds of solute dissolved in a solvent. In this study, six levels of learning progression were assumed by combining material conservation logic, combination logic, proportion logic, and particle number conservation logic. By analyzing the data, Infit and Outfit values of Person reliability, Item reliability, MNSQ and ZSTD were obtained from the Rasch model. As a result of the analysis of data, it was found that lower levels of learning progression prevailed up to the younger grade students till $8^{th}$ grade. The higher levels of learning progression(Level 2~Level 5) prevailed up to the older grade students. However, higher levels of learning progression dropped sharply in Grade 12. The 5 level of learning progression was very low in all grades, and $9^{th}$ grade had highest percentage of students belonging to the 5 level. Interpretation of these unusual results suggests a future research related to explanation differences of textbooks.

Scientifically Talented Students' Image of Science Museums and Their Preferred Topics for Exhibits - Focused on Students in Gwangju City - (과학 우수아의 과학관에 대한 이미지와 기대 전시 내용 - 광주지역 학생을 중심으로 -)

  • Kim, Jinkuk;Park, Jongwon
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.7
    • /
    • pp.1431-1449
    • /
    • 2013
  • This study is based on the assertion that science museums should consider visitors' views and expectations as they are not satisfied in many cases. In this study, we investigated 31 scientifically gifted students and 177 science high school students about their image of science museums. Using the questionnaire, it was found that only 51% of students visited science museums; however, the average number of visits was 4.2. This means that students tended to re-visit after the first visit of the science museum. Students had a 'good' image of science museums when they incurred hands-on experiences and observed new, interesting, curious and funny exhibits. And students had a 'bad' image of science museums due to the following aspects: lack of new and interesting exhibits, information and guide, diverse contents, and hands-on experience; deficiencies in environment; and inadequacy of the management, operation and composition of exhibits. Therefore, they hoped that science museums will provide more hands-on experiences and experiments, new and interesting exhibits, systematic management and composition of exhibits, information and guides, and a good environment. So science museums need to pay special attention to aspects like management, information guides and environment for the first-time visitors. Based on the above results, we suggested "Directions for a good science museum based on students' views". While asking students what topics they wanted to know and learn in a science museum, each student was given the choice of four topics; eventually, 2.9 answers overlapped for each topic. When classifying students' topics into four main themes for the Gwangju National Science Museum, the order from the most popular theme to the least one was 'science in everyday life', 'ocean/space/future science', 'light and science', and 'culture, art and science'. Among the topics mentioned by students, only 37% are exhibited in Seoul, Gwacheon, Daejeon, or Gwangju science museums. We hope that the results and research methods will be used for evaluation, re-construction, and reinvigorated presentation of science museums.