• Title/Summary/Keyword: science and technology communication

Search Result 4,695, Processing Time 0.032 seconds

Bias-Dependent Photoluminescence Analysis on InGaN/GaN MQW Solar Cells

  • Shim, Jae-Phil;Jeong, Hoonil;Choi, Sang-Bae;Song, Young Ho;Jho, Young-Dahl;Lee, Dong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.347-348
    • /
    • 2013
  • To obtain high conversion efficiency in InGaN-based solar cells, it is critical to grow high indium (In) composed InGaN layer for increasing sun light absorption wavelength rage. At present, most InGaN-based solar cells adopt InGaN/GaN multi-quantum-well (MQW) structure for high crystalline quality of InGaN with high In composition. In this study, we fabricated and compared the performances of two types of InGaN/GaN MQW solar cells which have the 15% (SC 15) and 25% (SC 25) of In composition at quantum well layer. Although both devices showed similar dark current density and leakage current, SC 15 showed better performance under AM 1.5G illumination as shown in Fig. 1. It is interesting to note that SC 25 showed severe current density decrease as increasing voltages. As a result, it lowered short circuit current density and fill factor of the device. However, SC 15 showed steady current density and over 75 % of fill factor. To investigate these differencesmore clearly, we analyzed their photoluminescence (PL) spectra under various applied voltages as shown in Fig. 2. At the same time, photocurrent, which was generated by PL excitation, was also measured as shown in Fig. 3. Further, we investigated the relationship between piezoelectric field and performance of InGaN based solar cell varying indium composition.

  • PDF

A Conceptual Framework for Comprehending the Spatial and Communication Layers in R & D Laboratories

  • Yoo, Uoo Sang
    • Architectural research
    • /
    • v.7 no.2
    • /
    • pp.35-45
    • /
    • 2005
  • This study discusses "mechanisms" in a research facility, specifically focusing on the question of how we can understand what happens in the physical environment and the communication between researchers. This study attempts to address this question by examining two physical settings, before and after the move of one research-educational facility, the Institute of Paper Science and Technology. The objective of the study is to suggest conceptual models to comprehend the relationships between spatial layouts and communication. The study examines the underlying mechanism of how the levels of communication meet the layers of spatial structure. The paper has four parts. First, the preceding studies will be reviewed evoking some issues of communication and physical setting in research facilities. Second a conceptual typology in office plan will be developed providing a theoretical framework to review the spatial organization of the subject research facility, the Institute of Paper Science and Technology (IPST). Third, the spatial organization of the former building (before the move) and the present building (after the move) of IPST will be analyzed. Finally, conceptual models of the mechanism between the communication and the spatial organization will be drawn up.

A Development of Satellite Communication Link Analysis Tool

  • Ayana, Selewondim Eshetu;Lim, SeongMin;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.117-129
    • /
    • 2020
  • In a Satellite communication system, a link budget analysis is the detailed investigation of signal gains and losses moving through a channel from a sender to receiver. It inspects the fading of passed on data signal waves due to the process of spreading or propagation, including transmitter and receiver antenna gains, feeder cables, and related losses. The extent of the proposed tool is to make an effective, efficient, and user-friendly approach to calculate link budget analysis. It is also related to the satellite communication correlation framework by building up a graphical interface link analysis tool utilizing STK® software with the interface of C# programming. It provides better kinds of graphical display techniques, exporting and importing data files, printing link information, access data, azimuth-elevation-range (AER), and simulation is also possible at once. The components of the link budget analysis tool include transmitter gain, effective isotropic radiated power (EIRP), free space loss, propagation loss, frequency Doppler shift, flux density, link margin, elevation plot, etc. This tool can be useful for amateur users (e.g., CubeSat developers in the universities) or nanosat developers who may not know about the RF communication system of the satellite and the orbital mechanics (e.g., orbit propagators) principle used in the satellite link analysis.

R&D Trends Monitoring through Scanning Public R&D Investments: The Case of Information & Communication Technology (ICT) in Meteorology and Climatology

  • Heo, Yoseob;Kim, Hyunwoo;Kim, Jungjoon;Kang, Jongseok
    • Asian Journal of Innovation and Policy
    • /
    • v.5 no.3
    • /
    • pp.315-329
    • /
    • 2016
  • Public R&D investment information has diverse implications for researching R&D trends. Also, as it is important for the establishment of R&D policy to grasp the current situation and trends of R&D to improve science and technology level, science and technology information service system, such as NTIS (National Science & Technology Information Service), is operated at a national level in most countries. However, since the data forms provided by current NTIS are raw data, it is necessary to develop the R&D performance indicator or to use additional scientometric methods by analyzing scientific papers or scientific R&D project information for grasping R&D trends or analyzing R&D task results. Thus, this study applied public R&D investment information to investigate and monitor R&D trends in the field of information & communication technology (ICT) of meteorology and climatology by using NTIS data of Korea and NSF (National Science Foundation) data of USA.

Point Ahead Angle(PAA) Estimation and a Control Algorithm for Satellite-Pointing of the Ground Terminal in Satellite-to-Ground Optical Communication (위성-지상간 광통신용 지상단말기의 위성 지향을 위한 PAA 도출 및 제어 알고리즘)

  • Taehyun Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.329-337
    • /
    • 2024
  • Free-space optical communication technology enables the high-speed data transmission and excellent anti-jamming security. We conduct research on satellite-to-ground free-space optical communication links for high-speed transmission of large-capacity surveillance and reconnaissance data. Since the satellite continues to move along its orbit while the optical signal is transmitted between the satellite and the ground, the pointing angle of the beam from the ground terminal needs to be corrected by Point Ahead Angle(PAA) so that the transmitted light reaches the expected location of the satellite. In this paper, we present the algorithm for PAA estimation and control.

PSO-based Resource Allocation in Software-Defined Heterogeneous Cellular Networks

  • Gong, Wenrong;Pang, Lihua;Wang, Jing;Xia, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2243-2257
    • /
    • 2019
  • A heterogeneous cellular network (HCN) is useful to increase the spectral and energy efficiency of wireless networks and to reduce the traffic load from the macro cell. The performance of the secondary user equipment (SUE) is affected by interference from the eNodeB (eNB) in a macro cell. To decrease the interference between the macro cell and the small cell, allocating resources properly is essential to an HCN. This study considers the scenario of a software-defined heterogeneous cellular network and performs the resource allocation process. First, we show the system model of HCN and formulate the optimization problem. The optimization problem is a complex process including power and frequency resource allocation, which imposes an extremely high complexity to the HCN. Therefore, a hierarchical resource allocation scheme is proposed, which including subchannel selection and a particle swarm optimization (PSO)-based power allocation algorithm. Simulation results show that the proposed hierarchical scheme is effective in improving the system capacity and energy efficiency.

Optimizations for Mobile MIMO Relay Molecular Communication via Diffusion with Network Coding

  • Cheng, Zhen;Sun, Jie;Yan, Jun;Tu, Yuchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1373-1391
    • /
    • 2022
  • We investigate mobile multiple-input multiple-output (MIMO) molecular communication via diffusion (MCvD) system which is consisted of two source nodes, two destination nodes and one relay node in the mobile three-dimensional channel. First, the combinations of decode-and-forward (DF) relaying protocol and network coding (NC) scheme are implemented at relay node. The adaptive thresholds at relay node and destination nodes can be obtained by maximum a posteriori (MAP) probability detection method. Then the mathematical expressions of the average bit error probability (BEP) of this mobile MIMO MCvD system based on DF and NC scheme are derived. Furthermore, in order to minimize the average BEP, we establish the optimization problem with optimization variables which include the ratio of the number of emitted molecules at two source nodes and the initial position of relay node. We put forward an iterative scheme based on block coordinate descent algorithm which can be used to solve the optimization problem and get optimal values of the optimization variables simultaneously. Finally, the numerical results reveal that the proposed iterative method has good convergence behavior. The average BEP performance of this system can be improved by performing the joint optimizations.

Distributed task allocation of mobile robotic sensor networks with guaranteed connectivity

  • Mi, Zhenqiang;Yu, Ruochen;Yi, Xiangtian;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4372-4388
    • /
    • 2014
  • Robotic sensor network (RSN) contains mobile sensors and robots providing feasible solution for many multi-agent applications. One of the most critical issues in RSN and its application is how to effectively assign tasks. This paper presents a novel connectivity preserving hybrid task allocation strategy to answer the question particularly for RSN. Firstly, we model the task allocation in RSN to distinguish the discovering and allocating processes. Secondly, a fully distributed simple Task-oriented Unoccupied Neighbor Algorithm, named TUNA, is developed to allocate tasks with only partial view of the network topology. A connectivity controller is finally developed and integrated into the strategy to guarantee the global connectivity of entire RSN, which is critical to most RSN applications. The correctness, efficiency and scalability of TUNA are proved with both theoretical analysis and experimental simulations. The evaluation results show that TUNA can effectively assign tasks to mobile robots with the requirements of only a few messages and small movements of mobile agents.