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Abstract 
 

Robotic sensor network (RSN) contains mobile sensors and robots providing feasible solution 

for many multi-agent applications. One of the most critical issues in RSN and its application is 

how to effectively assign tasks. This paper presents a novel connectivity preserving hybrid 

task allocation strategy to answer the question particularly for RSN. Firstly, we model the task 

allocation in RSN to distinguish the discovering and allocating processes. Secondly, a fully 

distributed simple Task-oriented Unoccupied Neighbor Algorithm, named TUNA, is 

developed to allocate tasks with only partial view of the network topology. A connectivity 

controller is finally developed and integrated into the strategy to guarantee the global 

connectivity of entire RSN,   which is critical to most RSN applications. The correctness, 

efficiency and scalability of TUNA are proved with both theoretical analysis and experimental 

simulations. The evaluation results show that TUNA can effectively assign tasks to mobile 

robots with the requirements of only a few messages and small movements of mobile agents. 
 

 

Keywords: robotic sensor networks; connectivity; task allocation; movement control; ad hoc 

networks 
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1. Introduction 

Recent years have witnessed rapidly growing demands of wireless sensor networks (WSN). 

A properly configured network of sensor devices can perform series of tasks, such as 

environmental monitoring, planetary exploration, disaster management, etc,. Typically, WSN 

consists of some stationary sensor nodes that are distributed initially in a fixed formation, and 

could be manually reconfigured according to updated requirements.  Nevertheless, in certain 

scenarios where the environment is dangerous and extreme, manually relocating the sensors is 

sometimes inapplicable, if not totally impossible. One of the feasible solutions to this issue is 

to enable the self-organized movement of the wireless sensors, letting them relocate 

automatically, which is typically denoted as mobile robotic sensor. Robotic Sensor Network 

(RSN) is normally composed of functionalized robots and mobile sensors, and the formation 

of the networked agents can be easily and automatically changed to fit the missions 

dynamically. The advantage of RSN holds the potential to revolutionize the application of 

WSN by enabling the users to collect data and perform tasks across complex and expending 

environment [1]. 

One of the critical issues to design the RSN is to find an efficient way to assign the 

decomposed tasks to the appropriate robots/sensors, i.e., task allocation. For instance, a 

petrochemical plant is jeopardized due to some natural hazards such as a major earthquake or 

typhoon, as shown in Fig. 1. Upon the disaster, a few buildings and oil pipeline are partially 

destroyed, and fires are triggered around the area.  Shortly after the accident, a network of 

robots and mobile sensors is deployed into the scene to execute the missions of firefighting 

and maintenance.  The RSN consists of firefighter robot, maintainer robot, surveillance sensor 

and flame sensor. The sensors will monitor the plant and locate the spots of interests, i.e., tasks.  

Then, the robot will receive the task information from the neighboring sensors and allocate the 

specific one to execute. 

 

Fig. 1. Simulated task allocation scenario with RSN 

The aforementioned scenario raises the important problem of task allocation, i.e., how to 



4374         Zhenqiang Mi et al.: Distributed task allocation of mobile robotic sensor networks with guaranteed connectivity 

find the best available candidate to execute one mission. To date, task allocation problem in 

Multi-robot Systems (MRS) has been extensively investigated. Please refer [2] for a 

comprehensive review. Compared to centralized algorithms for task allocation in MRS, 

decentralized control and task assignment is rather a natural choice, considering the distributed 

characteristic of the multi-agent networks. The most effective methods for distributed task 

allocation are threshold- and market-based algorithms. In threshold-based methods, a 

robot/sensor accepts a task once its “tolerance” surpasses some threshold or abandons it 

otherwise [3], [4]. The “tolerance” can be continuously adjusted through self-reinforcement 

[4] to enhance the robustness of the algorithm and prevent agents from occupying a task that 

they cannot accomplish and ignoring others’ needs [5]. Market-based methods let the agent to 

discover any tasks, and broadcast the messages to the team. Team members respond to the task 

with their proper biddings [6]. Then, the coordinator (or manager) accumulates the biddings 

and assigns the tasks to the most optimal agent according to some criteria.  This auction 

mechanism requires negotiation across the entire team, thus that a stable network is often 

prerequisite [7]. Extensive research have been conducted to optimize the market-based 

methods by reducing the computing and communication cost, adding time limit, utilizing 

combinational auction algorithms, etc,. 

The existing works can effectively assign the tasks to some appropriate agents. However, 

they often assume that each robot/sensor is capable of discovering and locating all tasks. Such 

a conjecture is not practical in most application, where most tasks require specific sensors to 

discover. Therefore, developing the task allocation algorithms for the specific RSN, and 

separating the discovery and allocation process are of great importance. Furthermore, a major 

problem that is often neglected in the existing work is that, the underlying network of the 

multi-agent system is assumed to be always connected. We argue that, due to the rapid 

movement of the mobile devices, the network topology will be changed dynamically. 

Consequently, connectivity of the network will be jeopardized if not properly handled [8]. 

Connectivity of the underlying network is critical for the RSN to successfully execute 

missions, especially in most task allocation scenario where inter-agent communication is 

necessary, e.g., market-based methods that require negotiations. 

To deal with these issues, a connectivity preserving task allocation strategy is proposed in 

this paper. We first model the task allocation in RSN to distinguish the discovering and 

allocating processes. Then, a simple Task-oriented Unoccupied Neighbor Algorithm (TUNA) 

is developed to allocate tasks with guaranteed connectivity of the underlying network. The 

algorithm is fully distributed and requires only partial view of the network topology, so that 

information exchange within the network can be minimized. Finally, a movement controller is 

designed to coordinate the sensors and robots to their designated locations to fulfill the 

objectives of task discovery and task execution. It is worthwhile to notice that, the proposed 

strategy aims to reach a compromise between network-wide connectivity and fast allocation of 

tasks, so that the efficiency of the task allocation may not surpass some of the existing methods. 

Nevertheless, we do guarantee a connected underlying network all time, which has been 

verified in both theoretical analysis and experimental simulations. 

The reminder of this paper is organized as follows: Section 2 provides related works in task 

allocation and connectivity control techniques. The main problems are formulated in Section 3. 

Section 4 proposed our main strategy of task discovery and task allocation for RSN. In Section 

5, the proposed method is then integrated with a potential based connectivity controller to 

maintain the connectivity of the RSN. Simulation studies are provided in Section 6. And the 

paper is finally concluded in Section 7. 
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 2. Related Works 

2.1 Distributed Task Allocation Techniques 

Task allocation technology has been extensively investigated in multi-agent systems [9]. 

Take the dynamic environment and the mobility of the mobile nodes into consideration, 

distributed scheme is a natural choice for most applications. Furthermore, in most multi-agent 

applications, communication among mobile node is often required to achieve cooperation and 

coordination goals in some missions [10]. In distributed task allocation, tasks are often 

referred to as spatial locations or resources. A variety of online [11], [12] and off-line [13] 

approaches have been proposed: online approaches handle variations of the task environment, 

while off-line approaches assume that the tasks in the scenario keep constant. In [14], a 

negotiation scheme is developed to coordinate a team of UAVs to locate and assign tasks to 

specific team members though inter-neighboring communication. A Genetic Algorithm (GA) 

based task assignment approach is proposed to dynamically assign simultaneous tasks to team 

of heterogeneous UAVs carrying designated sensors and weapons [15].  

To date, the most successful methods in task allocation are Market-based approaches [16]. 

Market-based approaches assign tasks through negotiation [17] and auction [18] among team 

members, and aiming at maximum the profit of each mobile node while minimize its cost, 

based on the strategy of its bid. Generally, agents send bids to a coordinator to allocate a 

specific task, and the coordinator will evaluate the bids and choose the winner with highest bid 

[19]. The approach could be either centralized [20] or distributed [21], depending on the 

selection of coordinator. Our approach is similar to that of auction-based task allocation. 

Considering the unique characteristic of RSN, our proposed algorithms are in a totally 

distributed manner with minimal inter-agent communications. Most importantly, differ from 

existing work, the connectivity of the network is preserved during the entire mission. 

2.2 Connectivity Preservation 

In market-based task allocation of mobile multi-agent systems, connectivity of the network is 

crucial throughout the lifetime of specific missions in order to meet the coordination 

requirement. To preserve global connectedness, various control approaches, including graph 

Laplacian based approach [22], [23], power iteration algorithm [24], artificial potential field 

[25] and navigation function [26] based method, have been introduced. These approaches aim 

at maintaining and increasing communication links. Other researches focus on reducing 

communication links while maintaining global connectedness. Zavlanos et al. [27] proposed a 

hybrid control system consisting of a market-based control strategy and a potential field based 

motion controller. The connectivity control system can reduce redundant communication links, 

as well as preserving connectivity based on local estimation of spanning subgraph. In [8], Mi 

et al. approaches the same objective, while the proposed approach requires only local 

information of network structure. Connectivity control approaches are further applied to the 

problem of connectivity preserving coordination, including flocking, rendezvous and 

formation control. 

3. Problem Formulation 

First, let the dynamic graph  denotes a mobile network of N sensors and M 

robots, where    denotes the set of vertices indexed by the set of mobile 
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sensors, denotes the set of mobile robots and 

 denotes the time-variant set of communication 

links. We define   to be a normalized non-negative weighting function 

symmetric in its arguments, i.e., , and assume that  . 

Second, for any tasks in the scenario, we define a task set , where 

denotes all task types in the mission. For each sensor node in the network, 

i.e., , a sensing set indicates its capability of sensing the tasks.  

A quadruple set for each mobile robot is designed as , the 

detailed description of the parameters in the quadruple set is provided as in Table 1: 

Table 1. Parameter Description 

Parameters Description 

 
Indicates the types of tasks that robot can 

perform. (a robot may perform multiple types of tasks) 

 The synthesized cost of to perform the k-th task 

 The residual energy level of  (in percentage) 

 Distance from to the candidate task 

 

To introduce the objectives in this work, we first make the following definitions: 

Definition 1: An undirected weighted dynamic graph  is defined as connected at time  if 

and only if there is at least one communicative path between any two vertices within it. 

Definition 2: A sensor can discover a task if and only if their direct distance is within the 

sensing range . 

Definition 3: A robot can respond to the task allocation request if and only if it is in vacancy, 

i.e., currently no assigned or performed tasks. 

 

 

Fig. 2. Problem formulation of task allocation in RSN 

The objective of this paper can be described as follows: 

In any obstacle-free task allocation scenario as is shown in Fig. 2.  A connectivity 

preserving task allocation strategy is designed so that, for any sensed task of type , is 
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assigned to the best available robot  in RSN according to the partial view of the network 

topology. Meanwhile, the connectivity of the network is always maintained while moving 

towards . 

Assuming that robot  is allocated with the task , it is easy to observe that the 

communication links between the robot and the two neighboring sensors will disconnect when 
 is moving towards . Consequently, the connectivity of the network will be destroyed. 

The way in which we configure the network to avoid this situation is the main contribution of 

this work. 

4. The Task-oriented Unoccupied Neighbor Algorithm 

To successfully assign a task to the best available mobile robot based on local information, two 

main steps are introduced in this section: task discovery and task allocation. Note that the task 

allocation process is independent of connectivity control, i.e., connectivity is not a parameter 

for robot in allocating tasks, which makes the proposed strategy more compatible with other 

task allocation algorithms. 

4.1 Task Discovery 

According to definition 2, sensors in the RSN are responsible for discovering the tasks. 

Assume that the sensing range of the sensor devices is r , and the sensors in the RSN 

continuously move in a certain pattern, e.g., random way point. Further assume the location of 

a task is , task type of is . A sensor  at location  will discover when both 

of the following two requirements are meet: 1) ; 2) . 
 

 

Fig. 3. Flowchart for task allocation process 

When discovers the task, it will generate a packet that describes the task’s local ID, type 

and location, and pass it to its nearest neighboring robot. Then, the robot will act as a 

coordinator in this particular task allocation process. It will add its ID and hop-count TTL=1 in 

the packet to compose them to a Task Allocation Request (TAR) message, and then send the 

message to all of its one-hop neighboring robots. In case there is no robot existing in the 
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neighbor set of , the packet will be send to its nearest neighboring sensor, which will repeat 

the process. Note that, in case of a rare situation that two or more neighboring sensors have 

exactly the same nearest distances with , i.e., a tie between sensors, will wait for the next 

updated stutas to find the next-hop sensor. Furthermore, if the sensor is a leaf node, i.e., no 

neighboring robot and sensor besides its parent sensor, it will notify its parent sensor, and the 

parent sensor will again send the packet to the second nearest neighboring sensor to look for 

available robot. The complete flowchart of the task discovery process is shown in Fig. 3. It is 

worthwhile to mention that, the message dissemination process in our strategy is build upon 

the loop-free Ad hoc On-Demand Distance Vector (AODV) routing protocol, and sensors 

unicast the packet to the next-hops. 

4.2 Task Allocation 

Task allocation with consideration of global optimization in distributed manner is always 

tricky, more often than not, each mobile agent in the network needs the global view to make 

the best decision. In this case, market-based methods induce a large amount of message 

exchange throughout the network, which may hold severe impact on network utility, not to 

mention the unstable topology of the underlying ad hoc networks. 

Therefore, a simple Task-oriented Unoccupied Neighbor Algorithm (TUNA) is introduced 

in this section to solve the task allocation problem locally. TUNA is fully distributed and 

requires only partial view of the network topology, so that information exchange within the 

network can be minimized. There are two algorithms in TUNA, as indicated in Table 2. The 

first algorithm (Algorithm 1, Table 2) is designed for the coordinator to accumulate biddings 

and assign tasks. The second algorithm (Algorithm 2, Table 2) is designed for other 

participating robots when they received a TAR. 

As described in Algorithm 2, according to definition 3, any robot in vacancy will be able to 

participate in the task allocation process. When a robot receives TAR, it will compare the 

type of task in TAR with its own task set, if , the robot will reply a Task Allocation 

Participation (TAP) message to the source node or reply a Task Reject (TR) message 

otherwise. A weighted function is introduced to compose TAP: 

                                  
(1) 

where , and are all non-negative constants, and . The constants 

can be adjusted according to specific application scenarios to achieve different objectives, e.g., 

energy-aware, or cost-aware. 

The detailed execution process for coordinator to assign task is shown in Algorithm 1, 

Table 2, which is described as following: TAP messages that are composed by the 

corresponding robots contain the robot ID, source ID, and the results of the weighted 

function .  The coordinator will receive all the TAP and compare all results in  (including 

itself if the type of task included in its task set), as shown in line 8-16 of Algorithm 1. 

If  , then a Task Confirmation (TC) message will be sent from the controller 

to to indicate that  has successfully allocated the task, as shown in line 22-24 of 

Algorithm 1. Upon receiving TC message,  will move directly towards to execute the 

task.   
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Table 2. Pseudo Code for TUNA 
 

Algorithm 1 (Coordinator) 

 
Algorithm 2 (Mobile robots) 
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For scenarios with multiple types of tasks and robots, chances are the coordinator received 

only TR messages from all its neighboring robots, and the coordinator itself is also unable to 

perform the task. In this case, the coordinator will gradually add the hop-count of the TAR 

messages, e.g., TTL=2, and looking for all two-hop neighboring robots (line 17-21 of 

Algorithm 1). Note that, the TAR message will send to all the sensor and robot neighbors of 

the coordinator when TTL≥2. The hop-count of the message will gradually increase until a 

qualified robot replies TAP. 

Theorem 1: The worst-case message complexity of TUNA for each task is , where is the 

number of mobile nodes. 

Proof: In the worst case, the topology of the network will be a line formation, where 

mobile sensors and only one mobile robot are in the network, as is shown in Fig. 4. In 

this case, each of the mobile sensors will send one message to the next hop neighbor to 

broadcast the task, which is a total number of messages generated. When the mobile 

robot receives the task information, a TAR with TTL=1 will be generated and sent to all of 

its one-hop neighbors. As none of the neighbors will reply to the task, new TARs with 

gradually increased TTL will be sent to the network, thus a total number of TAR 

messages will be generated by TUNA. Adding , the total messages complexity in the 

worst case for TUNA is which is . 
 

 

Fig. 4. Worst case topology for message complexity 

Note that, in real scenario, the worst case topology is not likely to be formed, and a random 

network will require much less messages for each task allocation process. 

The main advantages of TUNA are three-fold: 1) TUNA uses mobile robots as 

coordinators in the task allocation process, which could fully utilize the computing capability 

of robots and avoid unnecessary energy consumption of the sensors; 2) TUNA adopts a 

gradual expansion technique in searching candidate robot to avoid redundant message 

exchange in most scenarios; 3) TUNA uses only one coordinator for each task to avoid the 

possibility of concurrent allocation of tasks. 

5. Hybrid Control of Connectivity 

To facilitate the mobile robot to move towards the tasks without causing disconnections in the 

underlying network, a connectivity control method is required. We simply adopt the proactive 

topology control algorithm LT
3
C, which we proposed earlier, please refer to [8] for details. In 

this paper, we will focus on the movement control of the candidate robot while it moves 

towards the task. 
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Fig. 5. An intial densed network in (a) turns to a sparse network  

with no triangle and quadruple topology in (b) 

 

We first give a brief introduction of LT
3
C. LT

3
C is a light-weighted connectivity control 

algorithm that requires only two-hop neighbors’ information, so that the message exchange in 

the network can be reduced.  It simply removes all the triangle and quadruple topology of the 

network, and results in a sparse network structure with only essential communication links, as 

is shown in Fig. 5. With LT
3
C, mobile robots in the network can be granted with much more 

freedoms when they move from one location to another, which could considerably improve 

the performance of task allocation. 

With the aid of LT3C, a motion controller is designed to coordinate the robots and mobile 

sensors in the task allocation and execution process. We first make the following assumptions: 

Assumption 1: Mobile sensors will move around the space in some predefined patterns, 

e.g., RWP. Sensor will stop as long as it senses a task, and will start moving again as soon as 

the allocation of the task is finished. 

Assumption 2: An essential neighbor set is formed for each robot with the aid of 

LT3C. 

Assumption 3: An essential neighbor set is formed for each sensor with the aid of 

LT3C. 

Two attractive potential functions should be assigned to each mobile sensor and robot. First, 

for each two neighboring mobile agents in the RSN, e.g., , an inter-agent 

attractive potential function is assigned, which is used to maintain the essential 

communication links. Second, two different potential functions should be assigned to sensor 

and candidate robot, respectively. 1) For each mobile sensor, a planning potential function 

 for each mobile sensor is designed, where is the location of next step that 

generated by movement pattern. is able to drive the sensors towards the 

designated point in the scenario according to the adopted movement model. 2) For a robot  

that has successfully allocated a task , a tracking potential function  is assigned, 

which is able to drive the mobile robot to the task to execute the mission. 

To summarize, the potential function of the entire system is defined as follows: 
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                              (2) 

 can take the quadratic form 

                                     (3)
 

 can take the quadratic form 

                                              (4)
 

where and are positive constant gain. 
Due to the mutual relationship between neighboring agents, the attractive potential 

functions satisfy: 

                                                 (5) 

Furthermore,  has the following attributes: 

1) For a specific small value , where . If ,  

and , otherwise . 

2)  when . 

2)  is differentiable. 

A distributed controller for each sensor  is developed as follows: 

                              (6) 

It is worthwhile to notice that, as indicated in the attributes of attractive potential and (6), 
the attractive potential will increased infinitely as the link is extended to the point which it 

“almost” breaks. So sensors may not be able to finally reach  if there is an attractive 

potential in conflict, but will stay at the local minima of these two potentials until  is 

updated by the movement pattern. 

For each robot that has been assigned with a task, the controller is: 

                                 (7) 

Finally, for all other mobile robots in the network, the controller goes: 

                                                          (8) 
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6. Experimental Simulations 

6.1 Simulation Setup and Evaluation Metrics 

In this section, we present a series of simulation studies to evaluate the correctness and 

efficiency of TUNA. The trajectories of the mobile nodes are calculated and generated by 

MATLAB, and then they are integrated in to NS-2 for the evaluation of the network 

performances. The parameters are set as shown in Table 3.We assume the typical sensing 

ranges vary from 30m-90m without losing generality, and the constant gains are designed with 

consideration of the nodes’ realistic velocity. Furthermore, the specific small value is set to 

0.2 of the uniformed link quality so that the attractive potentials will only initiated when the 

inter-node distance is close to the threshold of losing connections, which is set as 0.1. The 

setups for the simulation scenarios should obey the following principles:  

(1) The design of and are strictly followed the proposed principles in Section 5. 

(2) The number of mobile agents is constant in during simulation, but differs among scenarios. 

And the Ratio of Robot (RR) among all nodes could be varied. 

(3) Each mobile sensor and robot randomly chooses two types of tasks in task set for sensing 

and allocation. 

(4) Each simulation runs for 30 times, and the average results are reported. 

To evaluate the efficiency of TUNA, we selected the following three metrics: 

Allocated Tasks (AT): due to the limited number of nodes and the connectivity constrain, 
there is a possibility that some of the tasks cannot be allocated, AT represents the number 
of tasks has been successfully allocated in the simulations. 

Average Generated Messages (AGM): AGM refers to the average message generated for 
each task during the entire task allocation. 

Average Travel Distance (ATD): ATD refers to the average distances traveled by each 
mobile robot during the entire task allocation. 

Table 3. Simulation Parameters 

6.2 Results and Discussions 

In the first scenario, two types of tasks are included. A RSN of 5 mobile sensors and 4 mobile 

robots are distributed in the scenario of 150m250m for task allocation, as shown in Fig. 6. 

The sensors are marked as round circle with colors that correspond to its designated sensing 

Parameters Description Value 

 Sensing Range 30m~90m 

 Constant gain of the synthesized cost 10 

 Constant gain of the  residual energy level 6 

 Constant gain of the  distance with task 1 

 Specific small value to trigger  0.2 

 Threshold of losing connection 0.1 

 Constant gain of planning potential 15 

 Constant gain of tracking potential 40 



4384         Zhenqiang Mi et al.: Distributed task allocation of mobile robotic sensor networks with guaranteed connectivity 

tasks. And mobile robots are marked as the same shape as the tasks. We assume that each 

mobile sensors and robots in this scenario can only perform one type of tasks for simplicity. 

 

Fig. 6. Test scenario for task allocation, (a) t=0; (b) t=10; (c)t=20; (d)t=50 

As is shown in Fig. 6, two sensors initially discovered each task, and initialized the task 

allocation process with proposed strategy. And two mobile robots are assigned with the tasks, 

respectively. While mobile robots move toward the tasks and sensors move to designated 

locations for further discovering other tasks, the connectivity of the entire network are always 

preserved. 

 

 

Fig. 7. Performance of task allocation subjected to 

 (a) different number of mobile agents; (b) different ratio of robots 
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In the second simulation, we further evaluate the performance of the task allocation 

strategy by randomly adding Types of Tasks (TT) in . The total number of tasks in the 

scenario is 8, and the simulated area is 600m600m. And different number of agents and 

different RR are used respectively to shown the efficiency with respect to network scale and 

network compositions. 

Firstly, we evaluate AT with respect to increased number of mobile nodes from 10 to 40, 

and RR≈0.5 indicates that there are approximately the same amount of sensors and robots. The 

results are shown in Fig. 7(a). It is clear that, in a scenario with fixed area, the success of task 

allocation can be improved by adding more mobile sensors and robots into the RSN. It is 

straightforward since there are two main reasons that a task cannot be successfully executed: 1) 

no mobile robot can perform the task in the RSN; 2) the robot that has allocated the task cannot 

be relocated to it, otherwise the connectivity would be in jeopardy according to the 

connectivity control method. So that adding more agents in the network could fix the 

aforementioned problems and consequently improve the successful rate of task allocations. 

Moreover, with different TT, the task allocation results are varied. Smaller TT shows better 

performance, this is due to the fact that the possibility of the mobile robots in RSN that can 

perform all the tasks is great when the number of mobile agents is much more than the number 

of TT.  

Secondly, different RR are adopted to evaluate the impact of network composition on the 

task allocation efficiency. Interestingly, as shown in Fig. 7(b), the RR has greater impacts on 

the AT, compared to the ratio of sensors. A possible explanation could be that the smaller 

number of robots always reduce the possibility of allocating tasks, however, since mobile 

sensors can move to another location after it discovered a task, and continue to sense others, so 

that smaller number of sensors will not severely affect the task allocation process.  

To evaluate the advantage of TUNA in terms of message complexity and travelling 

distance, we conduct a third simulation with fixed number of tasks as 6, and RR=0.5. We use 

varies number of mobile nodes to show the impacts of node density on the performances of 

TUNA. The results are unfolded in Fig. 8.  

 

Fig. 8. Performance of task allocation subjected to different number of mobile agents 

 (a) average messages generated; (b) average travel distances (m) 

Firstly, as shown in Fig. 8(a), the message complexity of TUNA is generally stable and 

slightly decreased with the increase of agents. This could be attributed to the increased 

possibility that a valid robot can be found with a smaller TTL, so that the number of TAR 
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messages is reduced. However, with increased types of tasks, TUNA may need more 

hop-counts to find the unoccupied robot to allocate the task, therefore the AMG are greater 

with higher TT. Secondly, we evaluate the ATD, which is an important factor to show 

TUNA’s scalability and energy-efficient. As shown in Fig. 8(b), the ATD decrease 

dramatically with the increased number of mobile agents, because the average robots-to-tasks 

distances are decreased when the network becomes denser. Moreover, the ATD is not 

sensitive to the types of tasks, so that TUNA has good scalability when handling task 

allocation problems in large scale networks. 

7. Conclusion and Future Works 

Connectivity of the underlying network is perquisite for many applications with RSN, and the 

problem of how to effectively assign tasks with guaranteed connectivity has not yet been 

solved. To address the issue, we modeled the task allocation problem in RSN to distinguish the 

discovering and allocating processes. Then, we proposed a fully distributed task allocation 

algorithm (TUNA) to allocate tasks with only partial view of the network topology. We 

integrated TUNA with a distributed connectivity controller to coordinate the movement of the 

mobile agents with guaranteed connectivity of the entire RSN. Theoretical analysis and 

simulation studies are provided to show that TUNA is effective in allocating tasks, reducing 

message exchanges and nodes’ traval distances. In the meantime, network-wide connectivity 

are always preseved. It is worthwhile to mention that the performance of task allocation varies 

with respect to the change of scenarios, but is acceptable if the number of mobile agents in the 

network reached a certain level.   

Our futher work will focus on the development of effective task allocation strategies of 

mobile robot and sensor systems in complex envrioment with random obstacles. Meanwhile, 

we will try to design a more effective topology control strategy to further reduce the ATD in 

the task allocation and excecution process. 
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