SR SRR NS ZEsaUEs =27 Vol.4 No. 1

ThehA| K QHE A B 3He Holeho] & Bal R Al M e] F A4 Re)
R L L
S e E LM PR N EREL
CONCURRENCY CONTROL IN MULTI-LEVEL SECURE DATABASE
MANAGEMENT SYSTEMS: MLS/CC

Yonglak Sohn *® |, Songchun Moon *

* Korea Advanced Institute of Science and Technology
Department of Information and Communication Engineering

1. Introduction

Multi-level secure database management system(MLS/DBMS) assigns data to more than
one security levels and restricts database operations based on those levels. This paper is concerned
with the transaction management in MLS/DBMS. We are now at the final stage of designing a
secure concurrency control method that will be included in the relational DBMS ‘IM’, the first-ever
developed one in Asia zone. This is the current status report of the DBMS ‘MLS/IM’ being
developed at KAIST.

The goal of secure transaction management is to enforce security and at the same time to
maintain a high degree of availability of the database to a large number of concurrent users. One of
the most difficult challenges in developing MLS/DBMS is the covert channel problem. An inter-
site communication occurs whenever a resource, such as memory, CPU time or a data item in a
database, is shared. A user may send information to others by modulating the state of the shared
resources. Other users who can detect changes in the state are capable of receiving the information.
When this unintended communication channel leads to violation of a security policy, it is called a
covert channel.

When covert channels have been eliminated, there is no illegal information flow.
Nevertheless, another kind of threat still exists that violates the security of database systems. From
a common-sense point of view, users classified at higher-security level perform more important
tasks than users classified at lower-security level. If lower-security level users happen to obstruct
the execution of higher-security level users' tasks such as retrievals and creations of information,
they violate the security of database systems.

For secure scheduling, previous work [3,4,5,6] concentrated on eliminating the covert
channels, but they failed to deal with the starvation of higher-security level users' requests.
Moreover, deadlocks that could occur among same security level users' requests have never been
dealt with. This paper proposes a secure scheduling scheme called mulfi-level secure concurrency

-212 -

ro

TEMYEES S ZHsawHEs =27 Vol.4 No.1

controller (MLS/CC) that is able to eliminate not only covert channels but also starvation of higher
security level users' requests and deadlocks. MLS/CC is based on the philosophy of concealment of
uncommitted data. For this concealment, MLS/CC prevents the disclosure of uncommitted data and
provides a yardstick against which a user is allowed to determine an appropriate data among
several ones.

2. Models
2.1 Transaction Model

Transaction is an abstract unit of concurrent computation that executes atomically. The
effects of a transaction do not interfere with other transactions that access the same data. Also, a
transaction either happens with all of its effects made permanent or it doesn’t happen and none of
its effects are permanent. This paper models transactions as Definition 1.

Definition 1 (Transaction)

Transaction is a finite sequence of database operations, such as read, write, commit, or abort
operations. The sequence models the order in which database operations are send to the
transaction scheduler. After the DBMS executes a transaction’s commit(or abort) operations,
the transaction is said to be committed(or aborted). A transaction that has started but is not
yet committed or aborted is called active, A transaction is uncommitted if it is aborted or
active. B

In this paper, the read, write operations on data x and commit, abort operations of transaction
are denoted by Ri[x], Wi[x], C;, and A; (respectively). The subscription of each operation indicates
the transaction T; that has tried the operation. The transaction number of T; is denoted by tn(T).
When two or more transactions execute concurrently, their database operations execute in an
interleaved fashion. To describe the mechanisms for scheduling the concurrent transactions, this
paper adopts the following definition of conflict.

Definition 2 (Conflict)

Any two operations issued by concurrent transactions may conflicts if they both operate on
the same data and at least one of them is write operation. Bl

These conflicting operations can cause transactions to behave incorrectly, or interfere, thereby

leading to an inconsistent database. The goal of transaction scheduling is to avoid interference and
thereby avoid incorrectness.

- 213 -

RSN FssUHES =2 Vol.4 No.1

e

2.2 Transaction on Multiversion Data

MLS/CC is based on the multiversion transaction scheduling scheme. In multiversion
scheduling scheme, each write operation on data item x produces a new version of x. Thus, for
each data item in database, there is a list of associated versions. R;[x] is performed by returning the
value of x from an appropriate version in the x’s list to T;. However, the existence of multiple
versions is visible only to the scheduler, and not to the user transactions that refer to the data as x.
The versions of x are denoted by xi, xj, ..., xo. For each version, the transaction interval is
maintained. The transaction interval of x; is composed of read-stamp and write-stamp, denoted by
R-stamp|x;] and W-stamp{x;] respectively. W-stamplx;] stands for the transaction that has created
x;, and R-stamp[x;] indicates the largest transaction number of any transaction that has read x;.

A multiversion history H represents the sequence of operations on the versions of data. Thus,
the scheduler maps Wi[x] and R;[x] in H into Wi[x;] and R[x;] (j < i). To map Ri[x] to R;[x;], the
scheduler examines W-stamps of x to find the version x; that has the maximal W-stamp less than or
equal to tn(T;). To map Wi[x] to Wi[x;], the scheduler again examines to find the version of x; that
has the maximal W-stamp less than tn(T;). If R-stamp[x;] > tn(T;), then scheduler rejects Wj[x].
Otherwise, the scheduler maps Wi[x] to Wi[x;], and thereby new version x; is created.

An H is one-copy serializable (1SR) if it is equivalent to a serial history over the same set of
transactions executed over a single version database. To determine if an H is 1SR, a modified
serialization graph, called multiversion serialization graph (MVSG(H)) is used [1]. That H is 1SR
if MVSG(H) is acyclic is proved in [1].

2.3 Security model

Previous work on secure transaction scheduling basically adopted Bell-LaPadula model [6]
or restricted Bell-LaPadula model [3,4,5] as their security models. The Bell-LaPadula model is
adopted as the security model in this paper since it is more flexible than the restricted Bell-
LaPadula model.

The database system consists of a finite set D of objects (data items) and a set T of subjects
(transactions). There is a lattice S of security levels with ordering relation "<'. A security level S;
dominates a security level S; if S; > S;. There is a labeling function L that maps objects and subjects
to a security level:

L:DuT—->S

Bell-LaPadula model has two requirements: (1) Simple Security Property- If T; reads data x
then L(T;) > L(x), and (2)*-Property- If T; writes data x, then L(T;) < L(x).

-214 -

ek

ZEMME T 53] FEstauns] =278 Vol.4 No. 1

Bell-LaPadula model is sufficient to prove that security is not violated through data accesses
[2]. However, if I(T;) > L(T;) and Wj[x] is delayed due to Ri[x] or Wi[x], then a covert channel
between T; and T; shall be established. Furthermore, since Wj[x] could obstruct the execution of
Wi[x] and Ryfx], T; can force T; fall into starvation. Consequently, complementary measures to
Bell-LaPadula model are necessary in MLS/DBMS.

3. Related work and problems

3.1 Related work

If L(T;) > L(Tj) and T; and Tj are in a conflict over the shared data, the unconditional
precedence approach used in [3,4,5] immediately grants Tj's operation. Since T; can be executec
without Tj's interference, the unconditional precedence approach can schedule the transactions
without inducing covert channels. However, such scheduling scheme is unfair because T; wili
suffer from starvation due to the interference caused by T;.

[6] adopts multiversion scheduling to reduce the rate of conflicts. In [6], for version control,
the R-stamp and the W-stamp of each version are set to the security level of a transaction. The
lower the transaction's security level, the larger the R(W)-stamp becomes, and vice versa. Since
L(T) > L(T;), R-stamp;[x;] is less than L(T;). Therefore, Wj[x;] can also be executed without the
interference of Ri[x;]. Consequently, the security-level based apprezch used in [6] can schedule the
transactions without inducing covert channels.

3.2 Problems in related work: unfairness and deadlocks

In case T; and T; are scheduled by the unfair schedulers like ones in [3,4,5,6], T; or Tj may
fall into starvation due to the schedule giving precedence to one over the other unconditionally. If
L(T;) > L(T)) and T; intentionally induces Ti's starvation, T; threatens the security of database
system, even if there is no illegal information flow. In Example 1, T; exploits the weakness of
unconditional precedence, thereby putting T; into starvation.

Example 1 (Starvation of higher-security level transaction due t orange-locks):

T, : RalR{BIR(IR{] A RIGRORIRAA
Timd wile] G W] G

Fig.1 Tj's starvation due to the conflict between R;[b} and Wi[b1

Suppose that two concurrent transactions, T; and Tj, interleave their execution as follows, as
time goes from left to right. Suppose also that L(a,b,c,d) 2 L(T;) > L(T)).

When T; tries to set a write-lock on 5, a scheduler immediately grants Tj's write-lock and

- 215 -

HREMYELEEES FHYsYESs =27 Vol.4 No. 1

changes Tj's read-lock on b to an orange-lock [3], which indicates a possibility of an incorrect read.
If T; has orange-locks when it has reached its some-free-point [3], which means that all data items
to be read by T; are read-locked and read into Ty’s local work space, T; is aborted. If Tj tries the
operation W;[b] periodically and intentionally, T; is thrown into starvation. Note that any higher-
security level transaction cannot acquire information at a proper time due to the interference caused
by lower-security level transaction. Therefore, starvation of higher-security level transaction is

insecure.

End of Example 1 H
The interference in two or more write operations are shown in Example 2.

Example 2 (Starvation of higher-security level transaction in security-level based approach):

Ti : Wi[y,-] Ai Wi[y,-] Ai Wi[y,] Ai Wi[y,'] Ai
Garbage Collection

Tj: WJ[yJ] Cj WJD{,] Ci v

Time >

Fig. 2 Ty's starvation due to the interference of Tj's W;[y;]

Suppose that L(y) > L(T;) > L(T;) and that a scheduler proposed in [6] is used to synchronize
T, and T; (Fig. 2). According to the Bell-LaPadula model, both T; and T; can produce new versions
of y. Since W-stampi[y;] < R-stamp;[y;], Wi[y] is rejected, and thus T; is aborted. To make matters
worse, Wi[y,] is repeatedly rejected until garbage collector erases y;. If T tries Wj[y,] intentionally
whenever garbage collector erases y;, T; is thrown into starvation. Since higher-security level
transaction cannot produce information at a proper time because of the interference caused by
lower-security level transaction, the security-level based approach is insecure.

End of Example 2 H

When L(T;) = L(Tj), the exposure of uncommitted data approach taken in [3,4,5,6] is subject
to deadlocks. The delayed access method in [3,4] leads to deadlock in the process of granting rights
to shared data. The delayed commit method in [5,6] makes transactions read uncommitted values,
so that each transaction must wait for the commitment of a transaction from which the
uncommitted values had been read. Example 3 shows a possible deadlock that could occur when
transactions are scheduled according to the scheduling scheme proposed in [6].

Example 3 (Deadlock in multiversion scheduling):

T;: Rilx]Wi[] waits until T; commits
T; : Wilx)] - \Rj[y,-] waits until Tj commits
Time >

Fig. 3 Deadlock due to reading the uncommitted value
-216 -

RSN E S as] IHHSYES =EW Vol.4 No. 1

If L(x) = L(y) = I(T;) = L(T;), then R;[x;] is able to read x; created by Wj[x,], and R;{y;] is able
to read y; created by Wi[y,] (Fig. 3). Since both T; and T; have read the uncommitted values, T; is
not allowed to commit until T; commits, and similarly T; is not allowed to commit until T;
commits, respectively. Therefore, both T; and T; are thrown into deadlock.

End of Example 3l
4. Multi-Level Secure Concurrency Controller: MLS/CC

We propose MLS/CC as a transaction scheduler that is capable of scheduling transactions
without covert channels, starvation of higher-security level transaction, and deadlocks. Although
MLS/CC is based on multiversion scheduling, but the philosophy of MLS/CC is solidified to allow
communication of two or more transactions only via the committed data. Thus, any two
communicating transactions can never encounter each other whilst they are active. For the
concealment of uncommitted data and the selection of proper data, MLS/CC has the following
properties.

Ordering Property: When a transaction begins, it is assigned a transaction number which is
larger than those of the committed transactions and smaller or equal to those of the transactions that
will arrive later. This property provides a yardstick for deciding the version that should be selected
for the transaction's read operations.

Readability Property: Transaction reads the committed value that has the largest W-stamp
among various versions. However, the W-stamp of the selected version will always be smaller than
the transaction number of the transaction that read it. That is, it reads the value that has the
youngest and committed version.

Visibility Property: As long as a transaction is active, the effects of its write operations are
invisible to other transaction; that is, those effects are visible only after the transaction commits.
While the transaction commits, the R-stamps and W-stamps of the versions that have been
produced by the write operations are set to the transaction number that is larger than those of active
transactions. '

These properties are sufficient to prove that MLS/CC is one-copy serializable(1SR) [1] and
secure. Before proving the soundness of MLS/CC, we describe an algorithm for secure transaction
scheduling as follows.

The VC appearing at both steps [1] and [6], controls the visibility of data items. For example,
VC at step [1] forces T; to read the committed version of data and VC at step [6] restricts y; to be
visible only to the transactions that have begun after T; had committed. VC serves the purpose of
assigning transaction number to T; and is incremented when T; completes. This is possible because

- 217 -

SR SN sta BessyESs =23 Vol.4 No. 1

the transaction number order need not necessarily correspond to the order in which transactions
complete their execution. VC also serves as a yardstick, so that MLS/CC can guarantee the
Ordering Property. According to steps [2] and [7], MLS/CC can achieve the Readability Property. '

" Step [5] preserves MLS/CC's Visibility Property. Setting R-stamps to -co at steps [3] and [5]
guarantees that the write operations of other transactions' can be executed without interference from
T/'s read operations.

Algorithm 1 (MLS/CC): Input: T; / Output: new data version y;, R-stamp;{xi]

Actions of T, Actions of MLS/CC corresponding to the actions of T;
Begin(T;) 11 (T, <- VC
Ri(x) [2] Return the k-th version of x which has the largest W-stamp among
various versions and W-stamp,[x,] is smaller or equal to tn(T;);
[3] Set R-stamp;{x,] to -oo;

Wily.] [4] Create a new version of y;
[5] Set R-stamp;[y;] and W-stamp;[y;} to -co and oo respectively;
End(T) [6] VC++;

[7] Set R-stamp;[x], R-stamp;[y;], and W-stamp;[y;] to VC;
End of Algorithm 1l

Theorem 1 (1SR): MLS/CC is one-copy serializable.

Proof: Assume that L(T;) > L(T}). If T; reads the version x; created by T}, an edge T; — T; is added
to MVSG(H). According to the Readability Property, T; reads the committed value x; and W-
stamp;[x;] < tn(T;). With the Visibility Property, tn(T;) < W-stamp;[x;], so that tn(T;) < tn(T}). In
case Tj reads the version y; created by T;, owing to the Visibility Property, T; can read y; after T;
commits. After T; commits, according to the Visibility Property, tn(T;) < R-stamp;[y,] and tn(T;) <
W-stamp;[y;]. Since tn(T;) < tn(T}), tn(T;) < W-stamp;[y;]. Therefore, Tj can never read y;, so that T;
— T; is never added to MVSG(H). Now that there is no cycle between T; and T;, MLS/CC is one-
copy serializable. O

Theorem 2 (Secureness): MLS/CC is secure.

Proof: Assume that L(T;) > L(T;). While T; is active and T; has accessed x;s), R-stampi[xq] is set
to -oo, resulting R-stampi[x;] < W-stamp;[x;]. Furthermore, while Tj is active, W-stamp;[x] is set
to o, so W-stamp;[x;] is never smaller than R-stampi[xi]. Therefore, Tj's Wj[x;] can be executed
without the interference from Ti's Ry[xi] or Wi[x;]. Now that L(T;) > L(T;), there is no covert
channel between T; and Tj. According to the Readability Property, when Ti; tries to read the effect
of Tj, Tj has already been committed. Moreover, with the Visibility Property, T; never reads Tj's
uncommitted value. Therefore, the abortion of T; can never cause the abortion of T;. Because L(T;)
> L(Tj), the starvation of higher-security level transaction never occurs. Hence that there is neither
covert channel nor starvation of higher-security level transaction, MLS/CC is secure.

-218 -

SR ES SYHSUES =2 Vol. 4 No. 1

Theorem 3 (Deadlock-free): MLS/CC is free from deadlock.

Proof: Assume T; and T; interleave their execution and create x; and y; respectively. According to
the Visibility Property, W-stamp;[y;] is set to o while T; is active, so tn(T;) is always smaller than
W-stamp;[y;]. Therefore, while Tj is active, T can never read y; because the Readability Property
forces T; to read y; whose W-stamp is smaller than tn(T;). Analogous to T;’s behavior, T; also can
never read x; while T; is active. Now that T; and T; never read the uncommitted version of data,
MLS/CC is free from deadlock. O

5. Conclusions

In this paper, we demonstrated that it is possible to eliminate covert channels without causing
the starvation in higher-security level transaction. Furthermore, compared to the previous work,
MLS/CC is expected to outperform the unconditional precedence approach and the security-level
based approach due to following benefits. First, higher-security level transactions do not suffer
from the starvation, so that they can execute concurrently with lower-security level transactions.
Moreover, as long as transactions are controlled under the MLS/CC, they are never confronted with
deadlocks. An obvious burden of maintaining multiple versions is storage space; however,
maintaining multiple versions would not incur much overhead of MLS/CC, since multiple versions
shall be of use anyway by the recovery algorithm employed in an MLS/DBMS.

When selecting an appropriate version among multiple versions, a more serious consideration
is needed. An investigation of selecting proper version, whilst a transaction reads data or a data
manager collects garbage, that incorporates the security policy will be included our future research.
For saving storage space, a method of reducing the number of versions, as well, will be studied.

References

[11 P. A. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control and Recovery in
Database Systems, Addison-Wesley, 1987.

2] Ravi Sandhu, "Mandatory Controls for Database Integrity," DATABASE SECURITY, II:
Status and Prospects, ed. David L.Spooner, Carl Landwehr, Elsevier Science Publishers
B.V., 1990, pp. 143 - 150.

[3] Johm McDermott and Sushil Jajodia, "Orange Locking: Channel-Free Database
Concurrency Control via Locking," DATABASE SECURITY, VI: Status and Prospects, ed.
Bhavani M. Thuraisingham, Carle. Landwehr, Elsevier Science Publishers B.V., 1993, pp.
267 - 284,

(4] Oliver Costich and Sushil Jajodia, "Maintaining Transaction Atomicity in MLS Database
Systems with Kernalized Architecture,” DATABASE SECURITY, VI: Status and

-219 -

SREMHBES s StetawEs =27 Vol.4 No. 1

Prospects, ed. Bhavani M. Thuraisingham, Carle. Landwehr, Elsevier Science Publishers
B.V., 1993, pp. 249 - 265.

[5] P. Ammann and S. Jajodia, "A Timestamp Ordering Algorithm for Secure, Single-Version,
Multi-Level Databases,"” DATABASE SECURITY, V: Status and Prospects, ed. Carl E.
Landwehr, Sushil Jajodia, Elsevier Science Publishers B.V., 1992, pp. 191 - 202.

[6] T. F. Keefe, W. T. Tsai and J. Srivastava, "Multilevel Secure Database Concurrency
Control,” Proceedings of IEEE Symposium on Security and Privacy, 1990, pp. 337 - 344.

- 220 -

