• 제목/요약/키워드: school bonding

Search Result 893, Processing Time 0.029 seconds

Shear bond strength of the three different kinds of resin cement on CAD/CAM ceramic inlay (CAD/CAM 세라믹 인레이에 대한 3종의 레진 시멘트의 전단결합강도에 관한 연구)

  • Baek, Chul-Woo;Park, Cheol-Woo;Park, Jun-Sub;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.1
    • /
    • pp.20-26
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the bond strengths between the latest CAD/CAM ceramic inlay and various resin cements which are used primarily for esthetic restoration. Materials and methods: Cylindrical ceramic blocks(Height: 5 mm, diameter: 3 mm) were fabricated by using Cerec3 and bonded on the dentin of the ninety extracted caries-free molars using three different kinds of resin cement(Unicem$^{(R)}$, Biscem$^{(R)}$, and Variolink II$^{(R)}$) according to the manufacturer's instructions. Ninety specimens were divided into 3 groups according to three different kinds of resin cement. Half of each group were conducted thermocycling under the conditions of the $5-55^{\circ}C$, 5,000 cycle but the other half of them weren't. All specimens were kept in normal saline $37^{\circ}C$, for 24 hours before measuring the bond strength. The shear bond strength was measured by Universal testing machine with a cross head speed of 0.5 mm/min. The results were analyzed statistically by t-test and one-way ANOVA. Results: Unicem$^{(R)}$ group showed the highest shear bond strength despite a slight decline by thermocycling. The shear bond strength of Unicem$^{(R)}$ group and ValiolinkII$^{(R)}$ group were significantly influenced by thermocycling, whereas Biscem$^{(R)}$ group was not influenced (P<.05). There were no significant differences in the bond strength between the three groups without thermocycling, but there was significant differences between Unicem$^{(R)}$ group and Valiolink II$^{(R)}$ group with thermocycling(P<.05). Conclusion: It has been shown to be clinically effective when the self-adhesive resin cements Unicem$^{(R)}$ and Biscem$^{(R)}$ were used instead of the etch-and-rinse resin cement Valiolink II$^{(R)}$ during the bonding of CAD/CAM ceramic inlay restorations with teeth.

Core-hole Effect on Partial Electronic Density of State and O K-edge x-ray Raman Scattering Spectra of High-Pressure SiO2 Phases (전자-정공 효과(Core-Hole Effect) 적용에 따른 SiO2 고압상들의 전자구조 및 O K-edge X-선 Raman 산란 스펙트럼 계산 결과 분석)

  • Khim, Hoon;Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • $SiO_2$ is one of the most abundant constituents of the Earth's crust and mantle. Probing its electronic structures at high pressures is essential to understand their elastic and thermodynamic properties in the Earth's interior. The in situ high-pressure x-ray Raman scattering (XRS) experiment has been effective in providing detailed bonding transitions of the low-z materials under extreme compression. However, the relationship between the local atomic structures and XRS features at high pressure has not been fully established. The ab initio calculations have been used to overcome such experimental difficulties. Here we report the partial density of states (PDOS) of O atoms and the O K-edge XRS spectra of ${\alpha}-quartz$, ${\alpha}-cristobalite$, and $CaCl_2$-type $SiO_2$ phases calculated using ab initio calculations based on the full-potential linearized augmented plane wave (FP-LAPW) method. The unoccupied O PDOSs of the $CaCl_2$-type $SiO_2$ calculated with and without applying the core-hole effects present significantly distinctive features. The unoccupied O p states of the ${\alpha}-quartz$, ${\alpha}-cristobalite$ and $CaCl_2$-type $SiO_2$ calculated with considering the core-hole effect present similar features to their calculated O K-edge XRS spectra. This confirms that characteristic features in the O K-edge XRS stem from the electronic transition from 1s to unoccupied 2p states. The current results indicate that the core-hole effects should be taken in to consideration to calculate the precise O K-edge XRS features of the $SiO_2$ polymorphs at high pressure. Furthermore, we also calculated O K-edge XRS spectrum for $CaCl_2$-type $SiO_2$ at ~63 GPa. As the experimental spectra for these high pressure phases are not currently available, the current results for the $CaCl_2$-type $SiO_2$ provide useful prospect to predict in situ high-pressure XRS spectra.

WEAR AND CHEMICAL DEGRADATION OF ESTHETIC RESTORATIVE MATERIALS (심미수복 재료의 마모와 화학적 분해)

  • Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Hun-Ju;Kim, Seon-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.190-201
    • /
    • 2004
  • The aim of this study was to evaluate the resistance to degradation and to compare the wear resistance characteristics of four esthetic restorative materials in an alkaline solution. The brands studied were Charmfil, Charmfil flow(composite resin), Compoglass F and PrimaFlow(compomer). The results were as follows: 1. The mass loss were not significantly different among the materials(p>0.05). 2. The sequence of the degree of degradation layer depth was in descending order by Compoglass F, PrimaFlow, Charmfil, and Charmfil flow. There were significant differences between Compoglass F and the others(p<0.05). 3. The sequence of the Si loss was in descending order by Charmfil flow, Charmfil, PrimaFlow, and Compoglass F. There were significant differences among these materials(p<0.05). 4. When observed with SEM, destruction of bonding between matrix and filler was observed and when observed with CLSM, the depth of degradation layer of specimen surface was observed. 5. The sequence of maximum wear depth was in descending order by Comfoglass, PrimaFlow Charmal, and Charmfil flow. There were significant differences among these materials(p<0.05). 6. The correlation coefficient between Si loss and degradation layer depth (r=0.602, p<0.05) Vicker's hardness number and maximum wear depth (r=0.501, p<0.05) were relatively high. These results indicate that wear and hydrolytic degradation may be considered to be evaluation factors of composite resins and compomers.

  • PDF

ABRASION AND CHEMICAL DEGRADATION OF LIGHT-CURED COMPOSITE RESIN FOR UPDATED RESIN DEVELOPMENT (차세대 레진개발을 위한 광중합형 복합레진의 마모와 화학적 분해)

  • Yang, Kyu-Ho;Choi, Nam-Ki;Yook, Geun-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.685-695
    • /
    • 2004
  • The aim of this study was to evaluate the resistance to degradation and to compare the wear resistance characteristics of four composite resins in an alkaline solution. The resistance to degradation was evaluated on the basis of mass loss(%), degradation depth(${\mu}m$), Si loss(ppm) and wear depth. The brands studied were Heliomolar flow, Filtek supreme, Point4, Tetric flow. The results were as follows: 1. The sequence of the mass loss was in descending order by Heliomolar flow, Filtek supreme, Point4, Tetric flow. There was significant differences among the materials except Heliomolar flow and Filtek supreme. 2. The sequence of the degree of degradation layer depth was in descending order by Filtek supreme, Heliomolar flow, Tetric flow, Point4. There were significant differences among the materials except Heliomolar flow and Tetric flow. 3. The sequence of Si loss was in descending order by Filtek supreme, Heliomolar flow, Point4, Tetric flow. There were significant differences among the materials except Point 4 and Tetric flow. 4. The sequence of maximum wear depth was in descending order by Heliomolar flow, Point4, Fillet supreme, Tetric flow and there was increasing wear depth on soaking in 0.1N NaOH solution. 5. When observed with SEM, destruction of bonding between matrix and filler was observed and when observed with CLSM, the depth of degradation layer of specimen surface was observed. There results indicate that wear and hydrolytic degradation could be considered to be evaluation factors of composite resins.

  • PDF

Effect of internal gap on retentivity in implant fixed prosthesis with lingual slot (설측 슬롯을 부여한 임플란트 고정성 보철물에서 내면 간격이 유지력에 미치는 영향)

  • Kim, Tae-Kyun;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.206-211
    • /
    • 2018
  • Purpose: Recently, a method of forming a slot in the prosthesis lingual has been introduced to solve the occlusal and aesthetic disadvantages of screw-retained prosthesis in the manufacture of implant-fixed prosthesis and to ensure retrievability in cement retained prostheses. The purpose of this study is to investigate the effect of the internal gap on the removal of the prosthesis in the preparation of cement-retained implant prostheses with lingual slots. Materials and methods: Titanium abutment and internal gap of the zirconia prosthesis to be attached to the upper part were set to 30, 35, and $50{\mu}m$, respectively. Three for each type total 15 were produced for each type. The zirconia prosthesis formed a retrievable cement-type slot with a space of 1 mm at the location where the titanium abutment meets the shelf area. Autocatalytic resin cement was used for bonding of abutment and zirconia prosthesis, and the maximum removal stress value was measured in units of Ncm by using the customized equipment of the cemented specimen. The Kruskal-Wallis test was used to compare the three groups by statistical analysis (${\alpha}=.05$), modified by post hoc test the Mann-Whitney U-test and the Bonferroni correction method were used to compare the two methods (${\alpha}=.017$). Results: There was no statistically significant difference in removal stress between the $30{\mu}m$ group and the $35{\mu}m$ group in the internal gap (P = .032), and there was a significant difference between the $30{\mu}m$ group and the $50{\mu}m$ group, between the $35{\mu}m$ group and the $50{\mu}m$ group (P < .017). Conclusion: Thus, the internal gap of computer-aided design affected the retention between the zirconia prosthesis and the titanium abutment.

Shear bond strength of Universal bonding systems to Ni-Cr alloy (니켈-크롬 합금에 대한 다용도 접착 시스템의 전단결합강도)

  • Song, So-Yeon;Son, Byung-Wha;Kim, Jong-Yeob;Shin, Sang-Wan;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.295-300
    • /
    • 2015
  • Purpose: The aim of this study was to evaluate the shear bond strength between Ni-Cr alloy and composite resin using universal adhesive systems coMPared to conventional method using metal primers. Materials and methods: For this study, a total of 120 cast commercial Ni-Cr alloy (Vera Bond 2V) disks were embedded in acrylic resin, and their surfaces were smoothed with silicon carbide papers and airborne-particle abrasion. Specimens of each metal were divided into 6 groups based on the combination of metal primers (Metal primer II, Alloy primer, Metal & Zirconia primer, MKZ primer) and universal adhesive systems (Single Bond Universal, All Bond Universal). All specimens were stored in distilled water at $37^{\circ}C$ for 24 hours. Shear bond strength testing was performed with a universal testing machine at a cross head speed of 1 m/min. Data (MPa) were analyzed using one-way ANOVA and the post hoc Tukey's multiple comparison test (${\alpha}$=.05). Results: There were significant differences between Single Bond Universal, All Bond Universal, Metal Primer II and Alloy Primer, MKZ Primer, Metal & Zirconia Primer (P<.001). Conclusion: Universal Adhesive system groups indicated high shear bond strength value bonded to Ni-Cr alloy than that of conventional system groups using primers except Metal Primer II. Within the limitations of this study, improvement of universal adhesive systems which can be applied to all types of restorations is recommended especially non-precious metal alloy. More research is needed to evaluate the effect of silane inclusion or exclusion in universal adhesive systems.

The Effect of Lattice Topology on Benzyl Alcohol Adsorption on Kaolinite Surfaces: Quantum Chemical Calculations of Mulliken Charges and Magnetic Shielding Tensor (캐올리나이트 규산염 층과 벤질알코올의 반응에 대한 양자화학계산에서 결정학적 위상이 멀리켄 전하와 자기 차폐 텐서에 미치는 영향)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.313-325
    • /
    • 2007
  • In order to have better insights into adsorption of organic molecules on kaolinite surfaces, we performed quantum chemical calculations of interaction between three different model clusters of kaolinite siloxane surfaces and benzyl alcohol, with emphasis on the effect of size and lattice topology of the cluster on the variation of electron density and magnetic shielding tensor. Model cluster 1 is an ideal silicate tetrahedral surface that consists of 7 hexagonal rings, and model cluster 2 is composed of 7 ditrigonal siloxane rings with crystallographically distinct basal oxygen atoms in the cluster, and finally model cluster 3 has both tetrahedral and octahedral layers. The Mulliken charge analysis shows that siloxane surface of model cluster 3 undergoes the largest electron density transfer after the benzyl alcohol adsorption and that of model cluster 1 is apparently larger than that of model cluster 2. The difference of Mulliken charges of basal oxygen atoms before and after the adsorption is positively correlated with hydrogen bond strength. NMR chemical shielding tensor calculation of clusters without benryl alcohol shows that three different basal oxygen atoms (O3, O4, and O5) in model cluster 2 have the isotropic magnetic shielding tensor as $228.2{\pm}3.9,\;228.9{\pm}3.4,\;and\;222.3{\pm}3.0ppm$, respectively. After the adsorption, the difference of isotropic chemical shift varies from 1 to 5.5 ppm fer model cluster 1 and 2 while model cluster 2 apparently shows larger changes in isotropic chemical shift. The chemical shift of oxygen atoms is also positively correlated with electron density transfer. The current results show that the adsorption of benzyl alcohol on the kaolinite siloxane surfaces can largely be dominated by a weak hydrogen bonding and electrostatic force (charge-charge interaction) and demonstrate the importance of the cluster site and the lattice topology of surfaces on the adsorption behavior of the organic molecules on clay surfaces.

The Effects of Game User's Social Capital and Information Privacy Concern on SNGReuse Intention and Recommendation Intention Through Flow (게임 이용자의 사회자본과 개인정보제공에 대한 우려가 플로우를 통해 SNG 재이용의도와 추천의도에 미치는 영향)

  • Lee, Ji-Hyeon;Kim, Han-Ku
    • Management & Information Systems Review
    • /
    • v.37 no.4
    • /
    • pp.21-39
    • /
    • 2018
  • Today, Mobile Instant Message (MIM) has become a communication means which is commonly used by many people as the technology on smart phones has been enhanced. Among the services, KakaoGame creates much profits continuously by using its representative Kakao platform. However, even though the number of users of KakaoGame increases and the characteristics of the users are more diversified, there are few researches on the relationship between the characteristics of the SNG users and the continuous use of the game. Since the social capital that is formed by the SNG users with the acquaintances create the sense of belonging, its role is being emphasized under the environment of social network. In addition, game user's concerns about the information privacy may decrease the trust on a game APP, and it also caused to threaten about the game system. Therefore, this study was designed to examine the structural relationships among SNG users' social capital, concerns about the information privacy, flow, SNG reuse intention and recommendation intention. The results from this study are as follow. First of all, the participants' bridging social capital had a positive effect on the flow of an SNG, but the bonding social capital had a negative effect on the flow of an SNG. In addition, awareness of information privacy concern had a negative effects on the flow of an SNG, but control of information privacy concern had a positive effect on the flow of an SNG. Lastly, the flow of an SNG had a positive effect on the reuse intention and recommendation intention of an SNG. Also, reuse intention of an SNG had a positive effect on the recommendation intention. Based on the results from this study, academic and practical implications can be drawn. First, This study focused on KakaoTalk which has both of the closed and open characteristics of an SNS and it was found that the SNG user's social capital might be a factor influencing each user's behaviors through the user's flow experiences in SNG. Second, this study extends the scope of prior researches by empirically analysing the relationship between the concerns about the SNG user's information privacy and flow of an SNG. Finally, the results of this research can provide practical guidelines to develop effective marketing strategies considering them for SNG companies.

Effects of Thermal and Mechanical Fatigue Stress on Bond Strength in Bracket Base Configurations (열적, 기계적 피로응력이 교정용 브라켓의 결합강도에 미치는 영향)

  • Kim, Jong-Ghee;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.625-642
    • /
    • 2000
  • The purpose of this study is to evaluate the effects of mechanical and thermal fatigue stress on the shear, tensile and shear-tensile combined bond strengths(SBS, TBS, CBS) in various orthodontic brackets bonded to human premolars with chemically cured adhesive(Ortho-one, Bisco, USA). Five types of commercially available metal brackets with various bracket base configurations of Photoetched base(Tomy, Japan), Non-Etched Foil Mesh base(Dentaurum, Germany), Micro-Etched Foil Mesh base(Ortho Organizers, USA), Chessboard base(Daesung, Korea), and Integral base(3M Unitek, USA) were used. Samples were divided into 3 groups, the first group was acted with shear-tensile combined loads($45^{\circ}$) of 200g for 4 weeks(mechanical fatigue stress), the second group was subjected to the 5,000 thermocycles of 15 second dwell time each in $5^{\circ}C\;and\;55^{\circ}C$ baths(thermal fatigue stress), and the third group was the control. Bond strengths were measured at the crosshead speed of 0.5mm/min. The cross-section of bracket base/adhesive interface and the fracture surface were examined with the stereoscope and the scanning electron microscope. The resin remnant on bracket base surface was assessed by ART(Adhesive Remnant Index). The obtained results were summarized as follows, 1. In static bond strength, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In all brackets, shear bond strength(SBS) was in the greatest value and shear-tensile combined strength(CBS) was in the least value(p<0.05). 2. After mechanical fatigue test, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In Photoetched base bracket and Micro-Etched Foil Mesh base bracket, shear bond strength(SBS), tensile bond strength(TBS) and shear-tensile combined strength(CBS) were decreased after mechanical fatigue test(p

  • PDF

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF