• 제목/요약/키워드: school bonding

검색결과 893건 처리시간 0.025초

The Stabilizing Role of Cyclodextrins on Keggin Phosphotungstic Acid by Complexation Unveiled by Electrospray Mass Spectrometry

  • Fan, YanXuan;Zhang, Yan;Jia, QiaoDi;Cao, Jie;Wu, WenJie
    • Mass Spectrometry Letters
    • /
    • 제6권1호
    • /
    • pp.13-16
    • /
    • 2015
  • This study demonstrated the stabilizing role of a cyclodextrin on Keggin $[PW_{12}O_{40}]^{3-}$ via hydrogen bonding complexation unveiled by ESI-MS. The distinctive fragmentation pathways of the $\{PW_{12}\}/{\gamma}$-CD complexes from that of discrete $[PW_{12}O_{40}]^{3-}$ showed that the so-called "weak" non-covalent interactions can effectively change the dissociation chemistry of POM in the gas phase. The influence of different types of solvents and organic additives such as ${\gamma}$-CD on the stability of Keggin $[PW_{12}O_{40}]^{3-}$ was also addressed firstly by ESI-MS.

Fatigue Behavior of Cracked Al 6061-T6 Alloy Structures Repaired with Composite Patch

  • Yoon, Young-Ki;Park, Jong-Joon;Kim, Guk-Gi;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.5-10
    • /
    • 2001
  • Due to the development of high-strength fibers and adhesives, it is now possible to repair cracked metallic plates by bonding reinforced patches to the plate over the crack. In this study, pre-cracked aluminum 6061-T6 alloy plates repaired with bonded carbon/epoxy composite patch are applied to investigate the effect of various patch shapes on the tensile strength and the fatigue behavior of the structure. A non-patch-boned cased and 2 type-50$\times$50, 40$\times$20 mm-composite patch-bonded cases were tested to obtain fracture loads and fatigue crack growth rate. The results showed that the patch-bonded repair improves the static strength by 17% and the fatigue life by 200% compared to non-repaired case. It means that patch-boned repair is more effective in the fatigue life. It was also revealed that the patching method along crack growth direction is more efficient in cost and weight reduction. By observing the fractography, patch-bonded repair specimens demonstrated zigzag fracture patterns compared with the non-patched specimens, which shows a typical ductile fracture.

  • PDF

낮은 구속압에서 고결화 혼합재의 미소변형강성 (Small Strain Stiffness of Salt-Cemented Granular Media under Low Confining Pressure)

  • 쭝꽝훙;변용훈;짠밍콰;이종섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.448-456
    • /
    • 2010
  • The mechanical behavior of granular soils is affected by particle bonding including natural cementation. This study addresses a simple model of small strain stiffness and salt concentration based on wave measurements of salt-cemented particulate media. Published models of artificially cemented soils with different curing methods and several types of cementation agents are reviewed. Glass beads with the median diameter of D50 = 0.5mm are prepared in rectangular cells using the water-pluviated method in salt water with different concentrations. Piezo disk elements and bender elements embedded in the cell are used for the measurements of compressional and shear waves. The relationships between elastic wave velocities and salt concentration show an exponential function. The measured small strain stiffness matches well the predicted small strain stiffness based on micromechanics for simple cubic monosized sphere particles. This study demonstrates that the salt concentration in salt-cemented specimen may be evaluated by using elastic wave velocities.

  • PDF

Garcinexanthone G, a Selective Butyrylcholinesterase Inhibitor from the Stem Bark of Garcinia atroviridis

  • Khaw, Kooi-Yeong;Murugaiyah, Vikneswaran;Khairuddean, Melati;Tan, Wen-Nee
    • Natural Product Sciences
    • /
    • 제24권2호
    • /
    • pp.88-92
    • /
    • 2018
  • The present study was undertaken to investigate the isolated compounds from the stem bark of Garcinia atroviridis as potential cholinesterase inhibitors and the ligand-enzyme interactions of selected bioactive compounds in silico. The in vitro cholinesterase results showed that quercetin (3) was the most active AChE inhibitor ($12.65{\pm}1.57{\mu}g/ml$) while garcinexanthone G (6) was the most active BChE inhibitor ($18.86{\pm}2.41{\mu}g/ml$). It is noteworthy to note that compound 6 was a selective inhibitor with the selectivity index of 11.82. Molecular insight from docking interaction further substantiate that orientation of compound 6 in the catalytic site which enhanced its binding affinity as compared to other xanthones. The nature of protein-ligand interactions of compound 6 is mainly hydrogen bonding, and the hydroxyl group of compound 6 at C-10 is vital in BChE inhibition activity. Therefore, compound 6 is a notable lead for further drug design and development of BChE selective inhibitor.

CMOS 이미지 센서의 웨이퍼 레벨 어셈블리를 위한 스페이스 형성에 관한 연구 (A study on forming a spacer for wafer-level CIS(CMOS Image Sensor) assembly)

  • 김일환;나경환;김현철;전국진
    • 대한전자공학회논문지SD
    • /
    • 제45권2호
    • /
    • pp.13-20
    • /
    • 2008
  • 본 논문에서는 CMOS 이미지 센서의 웨이퍼 레벨 어셈블리를 위한 스페이스 제작 방법을 설명하였다. 스페이스 제작을 위해서 SU-8, PDMS, Si-interposer를 이용하는 세 가지 방법을 제안하였다. SU-8 스페이스에서는 균일한 두께 특성을 위해서 웨이퍼 회전 장치를 고안했으며, PDMS 스페이스에서는 glass/PDMS/glass 구조의 정렬 접합을 위해서 새로운 접합 방법을 제안하였다. Si-interposer를 이용한 스페이스 제작에서는 DRF을 이용한 접합 조건을 확립하였다. 세 가지의 실험 결과 Si-interposer를 이용한 스페이스 제작 시 glass/스페이스/glass 구조의 접합력이 가장 뛰어났으며, 접합력의 크기는 32.3MPa의 전단응력을 나타내었다.

글루타알데하이드에 의해 결합된 효소촉매를 이용한 글루코스 센서의 성능향상 (Performance Improvement of Glucose Sensor Adopting Enzymatic Catalyst bonded by Glutaraldehyde)

  • 안연주;정용진;이규빈;권용재
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.378-385
    • /
    • 2016
  • In this study, we synthesized a biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of glutaraldehyde (GA)(GA/[GOx/PEI/CNT])for fabrication of glucose sensor. Main bonding of the GA/[GOx/PEI/CNT] catalyst was formed by crosslinking of functional end groups between GOx/PEI and GA. Catalytic activity of GA/[GOx/PEI/CNT] was quantified by UV-Vis and electrochemical measurements. As a result of that, high immobilization ratio of 199% than other catalyst (with only physical adsorption) and large sensitivity value of $13.4{\mu}A/cm^2/mM$ was gained. With estimation of the biosensor stability, it was found that the GA/[GOx/PEI/CNT] kept about 88% of its initial activity even after three weeks. It shows GA minimized the loss of GOx and improved sensing ability and stability compared with that using other biocatalysts.

Achieving Robust N-type Nitrogen-doped Graphene Via a Binary-doping Approach

  • Kim, Hyo Seok;Kim, Han Seul;Kim, Seong Sik;Kim, Yong Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.192.2-192.2
    • /
    • 2014
  • Among various dopant candidates, nitrogen (N) atoms are considered as the most effective dopants to improve the diverse properties of graphene. Unfortunately, recent experimental and theoretical studies have revealed that different N-doped graphene (NGR) conformations can result in both p- and n-type characters depending on the bonding nature of N atoms (substitutional, pyridinic, pyrrolic, and nitrilic). To overcome this obstacle in achieving reliable graphene doping, we have carried out density functional theory calculations and explored the feasibility of converting p-type NGRs into n-type by introducing additional dopant candidates atoms (B, C, O, F, Al, Si, P, S, and Cl). Evaluating the relative formation energies of various binary-doped NGRs and the change in their electronic structure, we conclude that B and P atoms are promising candidates to achieve robust n-type NGRs. The origin of such p- to n-type change is analyzed based on the crystal orbital Hamiltonian population analysis. Implications of our findings in the context of electronic and energy device applications will be also discussed.

  • PDF

Density Functional Theoretical Study on Intermolecular Interactions of 3,6-Dihydrazino-1,2,4,5-tetrazine Dimers

  • Hu, Yin;Ma, Hai-Xia;Li, Jun-Feng;Gao, Rong;Song, Ji-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2897-2902
    • /
    • 2010
  • Seven fully optimized geometries of 3,6-dihydrazino-1,2,4,5-tetrazine (DHT) dimers have been obtained with density functional theory (DFT) method at the B3LYP/$6-311++G^{**}$ level. The intermolecular interaction energy was calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction energy of the dimers is $-23.69\;kJ{\cdot}mol^{-1}$. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. Based on the vibrational analysis, the changes of thermodynamic properties from the monomers to dimer with the temperature ranging from 200.0 K to 800.0 K have been obtained using the statistical thermodynamic method. It was found that the hydrogen bonds dominantly contribute to the dimers, while the binding energies are not only determined by hydrogen bonding. The dimerization process can not occur spontaneously at given temperatures.

Highly Sensitive and Naked Eye Dual-readout Method for ʟ-Cysteine Detection Based on the NSET of Fluorophore Functionalized Gold Nanoparticles

  • Fu, Xin;Liu, Yuan;Wu, Zhitao;Zhang, He
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1159-1164
    • /
    • 2014
  • A simple, highly sensitive and selective method based on the rhodamine B-covered gold nanoparticle with dual-readout (colorimetric and fluorometric) detection for $\small{L}$-cysteine is proposed. A mechanism is that citrate-stabilized AuNPs were modified with RB by electrostatic interaction, which enables the nanometal surface energy transfer (NSET) from the RB to the AuNPs, quenching the fluorescence. In the presence of $\small{L}$-cysteine, it was used as a competitor in the NSET by the strongly Au-S bonding to release RB from the Au surface and recover the fluorescence, and the red-to-purple color change quickly, which was monitored simply by the naked eye. Under the optimum conditions, the detection limit is as low as 10 nM. The method possessed the advantages of simplicity, rapidity and sensitivity at the same time. The method was also successfully applied to the determination of $\small{L}$-cysteine in human urine samples, and the results were satisfying.

A novel method of surface modification to polysulfone ultrafiltration membrane by preadsorption of citric acid or sodium bisulfite

  • Wei, Xinyu;Wang, Zhi;Wang, Jixiao;Wang, Shichang
    • Membrane and Water Treatment
    • /
    • 제3권1호
    • /
    • pp.35-49
    • /
    • 2012
  • In membrane processes, various agents are used to enhance, protect, and recover membrane performance. Applying these agents in membrane modification could potentially be considered as a simple method to improve membrane performance without additional process. Citric acid (CI) and sodium bisulfite (SB) are two chemicals that are widely used in membrane feed water pretreatment and cleaning processes. In this work, preadsorptions of CI and SB were developed as simple methods for polysulfone ultrafiltration membrane modification. It was found that hydrogen bonding and Van Der Waals attraction could be responsible for the adsorptions of CI and SB onto membranes, respectively. After modification with CI or SB, the membrane surfaces became more hydrophilic. Membrane permeability improved when modified by SB while decreased a little when modified by CI. The modified membranes had an increase in PEG and BSA rejections and better antifouling properties with higher flux recovery ratios during filtration of a complex pharmaceutical wastewater. Moreover, membrane chlorine tolerance was elevated after modification with either agent, as shown by the mechanical property measurements.