• Title/Summary/Keyword: school bonding

Search Result 893, Processing Time 0.03 seconds

Surface analysis of a-$Si_xC_{1x}:H$ deposited by RF plasma-enhanced CVD (RF plasma-enhancd CVD 법에 의해 증착된 a-$Si_xC_{1x}:H$ 의 표면분석)

  • Kim, Yong-Tak;Yang, Woo-Seok;Lee, Hyun;Byungyou Hong;Yoon, Dae-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.285-303
    • /
    • 1999
  • Thin films of hydrogenated amorphous silicon carbide compounds (a-SixC1x:H) of different compositions were deposited on Si substrate by RF plasma-enhanced chemical vapor deposition (PECVD). Experiments were carried out using silane(SiH4) and methane(CH4) as the gas precursors at 1 Torr and at low substrate temperature (25$0^{\circ}C$). The gas flow rate was changed with every other parameters (pressure, temperature, RF power) fixed. The substrate was Si(100) wafer and all of the films obtained were amorphous. The bonding structure of a-SixC1x:H films deposited was investigated by X-ray photoelectron spectroscopy (XPS) for the film compositions. In addition, the surface morphology of films was investigated by atomic force microscopy (AFM).

  • PDF

Study on Relationship between a TiO2 Photo-Electrode Fabrication Conditions and Efficiency of a Dye-sensitized Solar Cells (산화티탄 광전극 제작조건과 염료감응 태양전지 효율과의 상관관계 연구)

  • Kim, Junoh;Kim, Jinyeop;Song, Chaeyoon;Kim, Jinsung;Yang, Seungjoon;Sung, Youl Moon
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1100-1101
    • /
    • 2015
  • In this work, the effect of addition of acetylacetone on microstructure and quality of nanoporous $TiO_2$ photo-electrodes was studied in dye-sensitized solar cells (DSCs) and structure and electrical properties of fabricated cells were investigated. From the results, the DSCs fabricated with acetyl acetone showed highest photovoltaic performances. This behavior may be attributed to paste agglomeration decrease and interconnection and bonding improvement between $TiO_2$ particles. Furthermore, the most favorable dye absorption time results to be 10h: exceeding this time a decrease in efficiency is observed despite the increasing amount of dye absorption. The $TiO_2$ photo-electrode prepared under the conditions of acetylacetone ratio of 15% and dye absorption time of 10hr showed the better photovoltaic performance ($J_{sc}=12.48mA/cm^2$, $V_{oc}=0.69V$, ff=0.68, ${\eta}=5.86%$).

  • PDF

Silk Fibroin/Chitosan Conjugate Crosslinked by Tyrosinase

  • Kang, Gyung-Don;Lee, Ki-Hoon;Ki, Chang-Seok;Nahm, Joong-Hee;Park, Young-Hwan
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.534-539
    • /
    • 2004
  • Two biopolymers, silk fibroin (SF) and chitosan, were conjugated by tyrosinase (EC 1.14.18.1), a polyphenolic oxidase, to improve their physicochemical properties, such as their thermal properties and morphological stabilities in organic solvents. The crosslinking between SF and chitosan took place mainly through Michael addition reactions. A main reaction between the amino groups in chitosan and o-quinone, the oxidation product of the tyrosyl residue in SF, was confirmed by UV spectroscopy. Measurements of viscosity and light scattering indicated that the crosslinked SF/chitosan conjugate was compact: it had a smaller particle size because of tight bonding forces between the SF and chitosan molecular chains. Thermal decomposition of SF/chitosan conjugates crosslinked by tyrosinase occurred at higher temperatures. The adhesiveness of the SF/chitosan conjugates decreased steadily as the crosslinking reaction progressed. We propose that this new crosslinking method be used for the preparation of silk fibroin/chitosan conjugates using tyrosinase. We expect that SF/chitosan conjugates crosslinked by tyrosinase can be used preferentially in biomedical applications because of its unique properties and non-toxicity.

Surface analysis of a-$Si_{x}C_{1-x}$: H deposited by RF plasma-enhanced CVD

  • Kim, Yong-Tak;Yang, Woo-Seok;Lee, Hyun;Byungyou Hong;Yoon, Dae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2000
  • Thin films of hydrogenated amorphous silicon carbide compounds ($a-Si_{x}C_{1-x}:H$) of different compositions were deposited on Si substrate by RF plasma-enhanced chemical vapor deposition (PECVD). Experiments were carried out using silane (SiH$_4$) and methane ($CH_4$) as the gas precursors at 1 Torr and at a low substrate temperature ($250^{\circ}C$). The gas flow rate was changed with the other parameters (pressure, temperature, RF power) fixed. The substrate was Si(100) wafer and all of the films obtained were amorphous. The bonding structure of $a-Si_{x}C_{1-x}:H$films deposited was investigated by X-ray photoelectron spectroscopy (XPS) for the film compositions. In addition, the surface morphology of films was investigated by atomic force microscopy (AFM).

  • PDF

Experimental study on damage and debonding of the frozen soil-concrete interface under freeze-thaw cycles

  • Liyun Tang;Yang Du;Liujun Yang;Xin Wang;Long Jin;Miaomiao Bai
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.663-671
    • /
    • 2023
  • Freeze-thaw cycles induce strength loss at the frozen soil-concrete interface and deterioration of bonding, which causes construction engineering problems. To clarify the deterioration characteristics of the interface under the freeze-thaw cycle, a frozen soil-concrete sample was used as the research object, an interface scanning electron microscope test under the freeze-thaw cycle was carried out to identify the micro index information, and an interface shear test was carried out to explore the loss law of interface shear strength under the freeze-thaw cycle. The results showed that the integrity of the interface was destroyed, and the pore number and pore size of the interface increased significantly with the number of freeze-thaw cycles. The connection form gradually deteriorates from surface-to-surface contact to point-to-surface contact and point-to-point contact, and the interfacial shear strength decreases the most at 0-3 freeze-thaw cycles, with small decreases from to 3-8 cycles. After 12 freeze-thaw cycles, the interfacial shear strength tends to be stable, and shear the failure occurs internally in the soil.

Microtensile bond strength of resin inlay bonded to dentin treated with various temporary filling materials (임시 가봉재가 상아질과 레진 인레이의 미세인장 결합 강도에 미치는 영향)

  • Kim, Tae-Woo;Lee, Bin-Na;Choi, Young-Jung;Yang, So-Young;Chang, Hoon-Sang;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.5
    • /
    • pp.419-424
    • /
    • 2011
  • Objectives: This study was aimed to determine the effects of temporary sealing materials on microtensile bond strength between resin-coated dentin and resin inlay and to compare the bonding effectiveness of delayed dentin sealing and that of immediate dentin sealing. Materials and Methods: The teeth were divided into 4 groups: group 1, specimens were prepared using delayed dentin sealing after temporary sealing with zinc oxide eugenol (ZOE); group 2, specimens were prepared using immediate dentin sealing and ZOE sealing; group 3, specimens were prepared using immediate dentin sealing and Dycal (Dentsply) sealing; group 4, specimens were prepared using immediately sealed, and then temporarily sealed with a resin-based temporary sealing material. After removing the temporary sealing material, we applied resin adhesive and light-cured. Then the resin inlays were applied and bonded to the cavity with a resin-based cement. The microtensile bond strength of the sectioned specimens were measured with a micro-tensile tester (Bisco Inc.). Significance between the specimen groups were tested by means of one-way ANOVA and multiple Duncan's test. Results: Group 1 showed the lowest bond strength, and group 4 showed the highest bond strength (p < 0.01). When temporary sealing was performed with ZOE, immediate dentin sealing showed a higher bonding strength than delayed dentin sealing (p < 0.01). Conclusions: Based on these results, immediate dentin sealing is more recommended than delayed dentin sealing in bonding a resin inlay to dentin. Also, resin-based temporary sealing materials have shown the best result.

BONDING OF RESIN INLAY TO GLASS-IONOMER BASE WITH VARIOUS TREATMENTS ON INLAY SURFACE (내표면 처리에 따른 레진 인레이와 글래스아이오노머 베이스간의 접착)

  • Jang, Byung-Sung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.399-406
    • /
    • 2000
  • The effect of inlay surface treatment on bonding was investigated when resin inlay was bonded to resin-modified glass-ionomer base with resin cement. For the preparation of glass-ionomer base, resin-modified glass-ionomer cement (Fuji II LC, GC Co., Japan) was filled in class I cavities of 7mm in diameter and 2mm in depth made in plastic molds. Eighty eight resin inlay specimens were made with Charisma$^{(R)}$ (Kulzer, Germany) and then randomly assigned to the four different surface treatment conditions: Group I, $50{\mu}m$ aluminium oxide sandblasting and silane treatment ; Group II, silane treatment alone ; Group III, sandblasting alone, and Group IV (control), no surface treatment. After a dentin bonding agent with primer (One-Step$^{TM}$, Bisco Inc., IL., U.S.A.) was applied to bonding surface of resin inlay and base, resin inlay were cemented to glass-ionomer base with a resin cement (Choice$^{TM}$, Bisco Inc., IL., U.S.A.). Shear bond strengths of each specimens were measured using Instron universal testing machine (4202 Instron, lnstron Co., U.S.A.) and fractured surfaces were examined under the stereoscope. Statistical analysis was done with one-way ANOVA and Dunkan's multiple range test. The results were as follows: 1. Sandblasting and silane treatment provided the greatest bond strength(10.56${\pm}$1.95 MPa), and showed a significantly greater bond strength than sandblasting alone or no treatment (p<0.05). 2. Silane treatment provided a significantly greater bond strength(9.77${\pm}$2.04 MPa) than sandblasting alone or no treatment (p<0.05). However, there was no significant difference in bond strength between sandblasting treatment and silane one (p>0.05). 3. Sandblasting alone provided no significant difference in bond strength from no treatment (p>0.05). 4. Stereoscopic examination of fractured surface showed that sandblasting and silane treatment or silane treatment alone had more cohesive failure mode than adhesive failure mode. 5. In relationship between shear bond strength and failure mode, cohesive failure occurred more frequently as bond strength increased.

  • PDF

A STUDY ON THE CHEMICAL RECYCLING METHOD OF METAL BRACKET (금속(金屬) Bracket의 화학적(化學的) 재생처리(再生處理) 방법(方法)에 관(關)한 연구(硏究))

  • Bang, Sang-Yong;Lee, Dong-Joo
    • The korean journal of orthodontics
    • /
    • v.20 no.1
    • /
    • pp.103-110
    • /
    • 1990
  • Metal brackets were recycled by variable methods for economic reason. Such recycling methods had a great effect on bracket slot width and bonding strength. Therefore, the recycling methods that don't change the properties of original bracket were suggested. In this study, debonded brackets were recycled with 30 kinds of solvents and bracket surfaces were examined by S.E.M. (Super IIIA, ISI International Scientific Instruments, Japan) and Stero Microscope (Sz-Tr, Olympus Tokyo, Japan) methods. The following results were obtained. 1. Thermosetting resin adhesives (eq. $Monolok^{(R)}$, $Concise^{(R)}$) were swelled most in sulfuric acid (assays 95%) and slightly in alcohol groups. 2. The solvent was exchanged every 24 hours during the brackets were recycled with sulfuric acid (assays 95%). As the passage of time, the adhesives were removed more clearly, and after 72 hours adhesives were nearly detached from bracket base. 3. Chemical recycled metal bracket surface showed no irregular structure by S.E.M. method.

  • PDF

Study on urea precursor effect on the electroactivities of nitrogen-doped graphene nanosheets electrodes for lithium cells

  • Kim, Ki-Yong;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • v.19
    • /
    • pp.40-46
    • /
    • 2016
  • Nitrogen-atom doped graphene oxide was considered to prevent the dissolution of polysulfide and to guarantee the enhanced redox reaction of sulfur for good cycle performance of lithium sulfur cells. In this study, we used urea as a nitrogen source due to its low cost and easy preparation. To find the optimum urea content, we tested three different ratios of urea to graphene oxide. The morphology of the composites was examined by field emission scanning electron microscope. Functional groups and bonding characterization were measured by X-ray photoelectron spectroscopy. Electrochemical properties were characterized by cyclic voltammetry in an organic electrolyte solution. Compared with thermally reduced graphene/sulfur (S) composite, nitrogen-doped graphene/S composites showed higher electroactivity and more stable capacity retention.

Thick Graphene Embedded Metal Heat Spreader with Enhanced Thermal Conductivity

  • Park, Minsoo;Chun, Kukjin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.234-237
    • /
    • 2014
  • In this paper, a copper foil-thick grapheme (thin graphite sheet)-copper foil structure is reported to achieve mechanically strong and high thermal conductive layer suitable for heat spreading components. Since graphene provides much higher thermal conductivity than copper, thick graphene embedded copper layer can achieve higher effective thermal conductivity which is proportional to graphene/copper thickness ratio. Since copper is nonreactive with carbon material which is graphene, chromium is used as adhesion layer to achieve copper-thick graphene-copper bonding for graphene embedded copper layer. Both sides of thick graphene were coated with chromium as an adhesion layer followed by copper by sputtering. The copper foil was bonded to sputtered copper layer on thick graphene. Angstrom's method was used to measure the thermal conductivity of fabricated copper-thick graphene-copper structure. The thermal conductivity of the copper-thick graphene-copper structures is measured as $686W/m{\cdot}K$ which is 1.6 times higher than thermal conductivity of pure copper.