Browse > Article
http://dx.doi.org/10.5714/CL.2016.19.040

Study on urea precursor effect on the electroactivities of nitrogen-doped graphene nanosheets electrodes for lithium cells  

Kim, Ki-Yong (School of Chemical and Biochemical Engineering, Pusan National University)
Jung, Yongju (Department of Chemical Engineering, Korea University of Technology and Education)
Kim, Seok (School of Chemical and Biochemical Engineering, Pusan National University)
Publication Information
Carbon letters / v.19, no., 2016 , pp. 40-46 More about this Journal
Abstract
Nitrogen-atom doped graphene oxide was considered to prevent the dissolution of polysulfide and to guarantee the enhanced redox reaction of sulfur for good cycle performance of lithium sulfur cells. In this study, we used urea as a nitrogen source due to its low cost and easy preparation. To find the optimum urea content, we tested three different ratios of urea to graphene oxide. The morphology of the composites was examined by field emission scanning electron microscope. Functional groups and bonding characterization were measured by X-ray photoelectron spectroscopy. Electrochemical properties were characterized by cyclic voltammetry in an organic electrolyte solution. Compared with thermally reduced graphene/sulfur (S) composite, nitrogen-doped graphene/S composites showed higher electroactivity and more stable capacity retention.
Keywords
graphene nanosheets; composite electrodes; lithium cells; N-doping; urea precursor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Manthiram A, Fu Y, Chung SH, Zu C, Su YS. Rechargeable lithium-sulfur batteries. Chem Rev, 114, 11751 (2014). http://dx.doi.org/10.1021/cr500062v.   DOI
2 Kim S, Hwang EJ, Jung Y, Han M, Park SJ. Ionic conductivity of polymeric nanocomposites electrolytes based on poly(ethylene oxide) and organo-clay materials. Colloids Surf A: Physicochem Eng Aspects, 313-314, 216 (2008). http://dx.doi.org/10.1016/j.colsurfa.2007.04.097.   DOI
3 Oh M, Kim S. Effect of dodecyl benzene sulfonic acid on the preparation of polyaniline/activated carbon composites by in situ emulsion polymerization. Electrochim Acta, 59, 196 (2012). http://dx.doi.org/10.1016/j.electacta.2011.10.058.   DOI
4 Ji X, Nazar LF. Advances in Li-S batteries. J Mater Chem, 20, 9821(2010). http://dx.doi.org/10.1039/B925751A.   DOI
5 Wang JZ, Lu L, Choucair M, Stride JA, Xu X, Liu HK. Sulfur-graphene composite for rechargeable lithium batteries. J Power Sources, 196, 7030 (2011). http://dx.doi.org/10.1016/j.jpowsour.2010.09.106.   DOI
6 Cao Y, Li X, Aksay IA, Lemmon J, Nie Z, Yang Z, Liu J. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys Chem Chem Phys, 13, 7660(2011). http://dx.doi.org/ 10.1039/C0CP02477E.   DOI
7 Thieme S, Brückner J, Meier A, Bauer I, Gruber K, Kaspar J, Helmer A, Althues H, Schmuck M, Kaskel S. A lithium–sulfur full cell with ultralong cycle life: influence of cathode structure and polysulfide additive. J Mater Chem A, 3, 3808 (2015). http://dx.doi.org/10.1039/C4TA06748G.   DOI
8 Zhang W, Qiao D, Pan J, Cao Y, Yang H, Ai X. A Li+ -conductive microporous carbon-sulfur composite for Li-S batteries. Electrochim Acta, 87, 497 (2013). http://dx.doi.org/10.1016/j.electacta.2012.09.086.   DOI
9 Zhang SS, Read JA. A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J Power Sources, 200, 77 (2012). http://dx.doi.org/10.1016/j.jpowsour.2011.10.076.   DOI
10 Chung SH, Singhal R, Kalra V, Manthiram A. Porous carbon mat as an electrochemical testing platform for investigating the polysulfide retention of various cathode configurations in Li-S cells. J Phys Chem Lett, 6, 2163 (2015). http://dx.doi.org/ 10.1021/acs.jpclett.5b00927.   DOI
11 Li J, Li L, Zhang B, Yu M, Ma H, Zhang J, Zhang C, Li J. Synthesis of few-layer reduced graphene oxide for lithium-ion battery electrode materials. Ind Eng Chem Res, 53, 13348 (2014). http://dx.doi.org/ 10.1021/ie5018282.   DOI
12 Park JY, Kim S. Preparation and electroactivity of polymer-functionalized graphene oxide-supported platinum nanoparticles catalysts. Int J Hydrogen Energy, 14, 6275 (2013). http://dx.doi.org/10.1016/j.ijhydene.2012.12.059.   DOI
13 Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nat Mater, 14, 271 (2015). http://dx.doi.org/10.1038/nmat4170.   DOI
14 Ju HM, Huh SH, Choi SH, Lee HL. Structures of thermally and chemically reduced graphene. Mater Lett, 64, 357 (2010). http://dx.doi.org/10.1016/j.matlet.2009.11.016.   DOI
15 Kim J, Kim S. Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode. Electrochim Acta, 119, 11 (2014). http://dx.doi.org/10.1016/j.electacta.2013.11.187.   DOI
16 Mou Z, Chen X, Du Y, Wang X, Yang P, Wang S. Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea. Appl Surf Sci, 258, 1704(2011). http://dx.doi.org/10.1016/j.apsusc.2011.10.019.   DOI
17 Wakeland S, Martinez R, Grey JK, Luhrs CC. Production of graphene from graphite oxide using urea as expansion–reduction agent. Carbon, 48, 3463 (2010). http://dx.doi.org/10.1016/j.carbon.2010.05.043.   DOI
18 Sun L, Wang L, Tian C, Tan T, Xie Y, Shi K, Li M, Fu H. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RCS Adv, 2, 4498 (2012). http://dx.doi.org/10.1039/C2RA01367C.   DOI
19 Wang X, Zhang Z, Qu Y, Lai Y, Li J. Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries. J Power Sources, 256, 361 (2014). http://dx.doi.org/10.1016/j.jpowsour.2014.01.093.   DOI
20 Tao L, Dou S, Ma Z, Shen A, Wang S. Simultaneous Pt deposition and nitrogen doping of graphene as efficient and durable electrocatalysts for methanol oxidation. Int J Hydrogen Energy, 40, 14371(2015). http://dx.doi.org/10.1016/j.ijhydene.2015.02.104.   DOI
21 Wang C, Chen H, Dong W, Ge J, Lu W, Wu X, Guo L, Chen L. Sulfur-amine chemistry-based synthesis of multi-walled carbon nanotube-sulfur composites for high performance Li-S batteries. Chem Commun, 50, 1202 (2014). http://dx.doi.org/ 10.1039/C3CC47223J.   DOI
22 Xu X, Yuan T, Zhou Y, Li Y, Lu J, Tian X, Wang D, Wang J. Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. Int J Hydrogen Energy, 39, 16043 (2014). http://dx.doi.org/10.1016/j.ijhydene.2013.12.079.   DOI
23 Azimi N, Xue Z, Hu L, Takoudis C, Zhang S, Zhang Z. Additive effect on the electrochemical performance of lithium-sulfur battery. Electrochim Acta, 154, 205 (2015). http://dx.doi.org/10.1016/j.electacta.2014.12.041.   DOI
24 Lin Z, Waller G, Liu Y, Liu M, Wong CP. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv Energy Mater, 2, 884 (2012). http://dx.doi.org/10.1002/aenm.201200038.   DOI
25 Sun F, Wang J, Chen H, Li W, Qiao W, Long D, Ling L. High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries. ACS Appl Mater Interfaces, 5, 5630(2013). http://dx.doi.org/10.1021/am400958x.   DOI
26 Kim S, Park SJ. Electrical signal effect on electrochemical activities of metal catalysts electrically deposited on carbon nanotubes. Electrochim Acta, 53, 4082 (2008). http://dx.doi.org/10.1016/j.electacta.2007.08.067.   DOI
27 Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater, 8, 500(2009). http://dx.doi.org/10.1038/nmat2460.   DOI
28 Kim S, Jung Y, Park SJ. Effect of imidazolium cation on cycle life characteristics of secondary lithium–sulfur cells using liquid electrolytes. Electrochim Acta, 52, 2116 (2007). http://dx.doi.org/10.1016/j.electacta.2006.08.028.   DOI
29 Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc, 133, 18522 (2011). http://dx.doi.org/ 10.1021/ja206955k.   DOI