• Title/Summary/Keyword: school avoidance

Search Result 543, Processing Time 0.031 seconds

Design and Implementation of a Stealth Game featuring Avoidance (회피를 이용한 잠입 액션 게임의 기획 및 구현)

  • Choi, Yoonji;Han, Sang-Goo;Moon, Gyu-Song;Paik, Doowon;Oh, Kyoungsu
    • Journal of Korea Game Society
    • /
    • v.16 no.4
    • /
    • pp.25-34
    • /
    • 2016
  • Recent stealth games are mainly action games with frontal confrontation or combat features. In this paper, we designed and implemented an stealth game, where characters are weak person and play is conducted by avoiding the situation, not by frontal confrontation. We chose the light as the key factor for the avoidance. The players can survive and fulfill the missions by blocking the enemy's vision. After implementing the first version, we found that the game using only the avoidance is not as fun as expected. To make the game more interesting, we added limited attack function, provided mini map for better user interface, and this paper describes the options we had and experiences of the decision making process to make the better game.

A SINGULARITY AVOIDANCE STEERING LAW BASED ON THE MINIMIZATION TECHNIQUE

  • Oh, Hwa-Suk;Lee, Bong-Un;Rhee, Seung-Wu;Lee, Seon-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.397-404
    • /
    • 2006
  • Geometric singularity problems are principle difficulties of single-gimbal control moment gyros in spacecraft attitude control. To overcome these singularities, many steering logics have been studied. In this paper, a new null motion steering law is suggested, which is based on the minimization of the directional components of output torque with respect to the required torque. The suggested steering law has been simulated and verified to work well around several critical singular points which have been classified as testing points of avoidance algorithm in previous literatures.

Modeling Jamming Avoidance Response of Pulse-type Weakly Electric Fish (전기물고기의 방해 회피 반응 모델링과 응용)

  • Soh, JaeHyun;Kim, DaeEun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.924-929
    • /
    • 2015
  • In this paper, we suggest a phase difference algorithm inspired by weakly electric fish. Weakly electric fish is a fish which generates electric field though its electric organ in the tail. The weakly electric fish search for prey and detect an object by using electrolocation. The weakly electric fish have Jamming Avoidance Response (JAR) to avoid jamming signal. One of pulse-type weakly electric fish Gymnotus carapo also have JAR to reduce the probability of coincidence of pulses. We analyze this response signal and design the phase difference algorithm. We expect that simple algorithm inspired by weakly electric fish can be used in many engineering fields.

Conceptual Model for Fuzzy-CBR Support System for Collision Avoidance at Sea Using Ontology

  • Park, Gyei-Kark;Kim, Woong-Gyu;Benedictos, John Leslie RM
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.390-396
    • /
    • 2007
  • Fuzzy-CBR Collision Avoidance Support System is a system that finds a solution from past knowledge retrieved from the database and adapted to a new situation. Its algorithm has resulted to an adapting a solution for a new situation. However, ontology is needed in identifying concepts, relations and instances that are involved in a situation in order to improve and facilitate the efficient retrieval of similar cases from the CBR database. This paper proposes the way to apply ontology for identifying the concepts involved in a new environment and use them as inputs, for a ship collision avoidance support system., Similarity will be obtained through document articulation and using abstraction levels. A conceptual model of a maneuvering situation will be built using these ontologies.

Radar Sensor System Concept for Collision Avoidance of Smart UAV (무인기 충돌방지를 위한 레이다 센서 시스템 설계)

  • Kwag, Young-Kil;Kang, Jung-Wan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.203-207
    • /
    • 2003
  • Due to the inherent nature of the low flying UAV, obstacle detection is a fundamental requirement in the flight path to avoid the collision from obstacles as well as manned aircraft. In this paper, a preliminary sensor requirements of an obstacle detection system for UAV in low-altitude flight are analyzed, and the automated obstacle detection sensor system is proposed assessing both passive and active sensors such as EO camera, IR, Laser radar, microwave and millimeter radar. In addition, TCAS (Traffic Alert and Collision Avoidance System) are reviewed for the collision avoidance of the manned aircraft system. It is suggested that small-sized radar sensor is the best candidate for the smart UAV because an active radar can provide the real-time informations on range and range rate in the all-weather environment. However, an important constraints on small UAV should be resolved in terms of accommodation of the mass, volume, and power allocated in the payload of the UAV system design requirements.

  • PDF

Obstacle Avoidance of Quadruped Robots with Consideration to the Order of Swing Leg

  • Yamaguchi, Tomohiro;Watanabe, Keigo;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.645-650
    • /
    • 2003
  • Legged robots can avoid an obstacle by crawling-over or striding, according to the obstacle’s nature and the current state of the robot. Thus, it can be observed that the mobility efficiency to reach a destination is improved by such action. Moreover, if robots have many legs like 4-legged or 6-legged types, then the robot movement range is affected by the order of swing leg. In this paper, the avoidance action of a quadruped robot is generated by a neural network (NN) whose inputs are information on the position of the destination, the obstacle configuration and the robot's self-state. To realize a free gait in static walking, the order of swing leg is determined using an another NN whose inputs are the amount of movements and the robot’s self-state. The design parameter of the latter NN is adjusted by using genetic algorithm (GA).

  • PDF

CANCAR - Congestion-Avoidance Network Coding-Aware Routing for Wireless Mesh Networks

  • Pertovt, Erik;Alic, Kemal;Svigelj, Ales;Mohorcic, Mihael
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4205-4227
    • /
    • 2018
  • Network Coding (NC) is an approach recently investigated for increasing the network throughput and thus enhancing the performance of wireless mesh networks. The benefits of NC can further be improved when routing decisions are made with the awareness of coding capabilities and opportunities. Typically, the goal of such routing is to find and exploit routes with new coding opportunities and thus further increase the network throughput. As shown in this paper, in case of proactive routing the coding awareness along with the information of the measured traffic coding success can also be efficiently used to support the congestion avoidance and enable more encoded packets, thus indirectly further increasing the network throughput. To this end, a new proactive routing procedure called Congestion-Avoidance Network Coding-Aware Routing (CANCAR) is proposed. It detects the currently most highly-loaded node and prevents it from saturation by diverting some of the least coded traffic flows to alternative routes, thus achieving even higher coding gain by the remaining well-coded traffic flows on the node. The simulation results confirm that the proposed proactive routing procedure combined with the well-known COPE NC avoids network congestion and provides higher coding gains, thus achieving significantly higher throughput and enabling higher traffic loads both in a representative regular network topology as well as in two synthetically generated random network topologies.

A Unified Framework for Overcoming Motion Constraints of Robots Using Task Transition Algorithm (작업 전이 알고리즘 기반 로봇 동작 제한 극복 프레임워크)

  • Jang, Keunwoo;Kim, Sanghyun;Park, Suhan;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.129-141
    • /
    • 2018
  • This paper proposes a unified framework that overcomes four motion constraints including joint limit, kinematic singularity, algorithmic singularity and obstacles. The proposed framework is based on our previous works which can insert or remove tasks continuously using activation parameters and be applied to avoid joint limit and singularity. Additionally, we develop a method for avoiding obstacles and combine it into the framework to consider four motion constraints simultaneously. The performance of the proposed framework was demonstrated by simulation tests with considering four motion constraints. Results of the simulations verified the framework's effectiveness near joint limit, kinematic singularity, algorithmic singularity and obstacles. We also analyzed sensitivity of our algorithm near singularity when using closed loop inverse kinematics depending on magnitude of gain matrix.

Local Obstacle Avoidance of Nonholonomic Wheeled Mobile Robots in Trajectory Tracking

  • Lee, Young-Ho;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1172-1177
    • /
    • 2003
  • In this paper, we propose an obstacle avoidance technique in trajectory tracking of nonholonomic wheeled mobile robots. Input-output linearized backstepping controller is used in trajectory tracking, and repulsive type control input for obstacle avoidance is added to it. The added input is generated by fuzzy logic. And we do not add the two inputs directly but combine them via fuzzy logic, which determines the ratings of each input. Some simulations are performed to show that with the proposed algorithm, the mobile robot can track its reference trajectory even if there are multiple obstacles on the trajectory of robot.

  • PDF

Obstacle Avoidance Method for UAVs using Polar Grid

  • Pant, Sudarshan;Lee, Sangdon
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.1088-1098
    • /
    • 2020
  • This paper proposes an obstacle avoidance method using a depth polar grid. Depth information is a crucial factor for determining the safe path for collision-free navigation of unmanned aerial vehicles (UAVs) as it can perceive the distance to the obstacles effectively. However, the existing depth-camera-based approaches for obstacle avoidance require computational y expensive path planning algorithms. We propose a simple navigation method using the polar-grid of the depth information obtained from the camera with narrow field-of-view(FOV). The effectiveness of the approach was validated by a series of experiments using software-in-the-loop simulation in a realistic outdoor environment. The experimental results show that the proposed approach successfully avoids obstacles using a single depth camera with limited FOV.