• Title/Summary/Keyword: sccm

Search Result 658, Processing Time 0.024 seconds

Types and Yields of Carbon Nanotubes Synthesized Depending on Catalyst Pretreatment

  • Go, Jae-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.17.2-17.2
    • /
    • 2011
  • Double-walled carbon nanotubes (DWCNTs) were grown with vertical alignment on a Si wafer by using catalytic thermal chemical vapor deposition. This study investigated the effect of pre-annealing time of catalyst on the types of CNTs grown on the substrate. The catalyst layer is usually evolved into discretely distributed nanoparticles during the annealing and initial growth of CNTs. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. Both the catalyst and support layers were coated by using thermal evaporation. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of H2 as a carrier gas and 20 sccm of C2H2 as a feedstock at 95 torr and $750^{\circ}C$. In this study, the catalyst and support layers were subject to annealing for 0~420 sec. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The annealing for 90~300 sec caused the growth of DWCNTs as high as ~670 ${\mu}m$ for 10 min while below 90 sec and over 420 sec 300~830 ${\mu}m$-thick triple and multiwalled CNTs occurred, respectively. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of 112~191 cm-1, implying the presence of DWCNTs, TWCNTs, MWCNTs with the tube diameters 3.4, 4.0, 6.5 nm, respectively. The maximum ratio of DWCNTs was observed to be ~85% at the annealing time of 180 sec. The Raman spectra of the as-grown DWCNTs showed low G/D peak intensity ratios, indicating their low defect concentrations. As increasing the annealing time, the catalyst layer seemed to be granulated, and then grown to particles with larger sizes but fewer numbers by Ostwald ripening.

  • PDF

The Effects of Etch Process Parameters on the Ohmic Contact Formation in the Plasma Etching of GaN using Planar Inductively Coupled $CH_4/H_2/Ar$ Plasma (평판 유도 결합형 $CH_4/H_2/Ar$ 플라즈마를 이용한 GaN 건식 식각에서 공정변수가 저항성 접촉 형성에 미치는 영향)

  • Kim, Mun-Yeong;Tae, Heung-Sik;Lee, Ho-Jun;Lee, Yong-Hyeon;Lee, Jeong-Hui;Baek, Yeong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.438-444
    • /
    • 2000
  • We report the effects of etch process parameters on the ohmic contact formation in the plasma etching of GaN. Planar inductively coupled plasma system with $CH_4/H_2/Ar$gas chemistry has been used as etch reactor. The contact resistance and the specific contact resistance have been investigated using transfer length method as a function of RF bias power and %Ar gas concentration in total flow rate. AES(Auger electron spectroscopy) analysis revealed that the etched GaN has nonstoichiometric Ga rich surface and was contaminated by carbon and oxygen. Especially large amount of carbon was detected at the sample etched for high bias power (or voltage) condition, where severe degradation of contact resistance was occurred. We achieved the low ohmic contact of $2.4{\times}10^{-3} {\Omega}cm^2$ specific contact resistance at the input power 400 W, RF bias power 150 W, and working pressure 10mTorr with 10 sccm $CH_4$, 15 sccm H2, 5 sccm Ar gas composition.

  • PDF

Micro Structure and the Coefficient of Friction with $H_2S$ and $C_3H_8$ Gas Addition During Plasma Sulf-nitriding of SM45C Carbon Steel (SM45C 탄소강의 플라즈마 침류질화 처리 시 $H_2S$, $C_3H_8$ 가스 첨가에 따른 미세조직 및 마찰계수의 변화)

  • Ko, Y.K.;Moon, K.I.;Lee, W.B.;Kim, S.W.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.5
    • /
    • pp.237-242
    • /
    • 2007
  • Friction coefficient of SM45C steel was surprisingly reduced with $H_2S$ and $C_3H_8$ gas during plasma sulf-nitriding. During the plasma sulf-nitriding, 100-700 sccm of $H_2S$ gas and 100 sccm of $C_3H_8$ gas were added and working pressure and temperature were 2 torr, $500-550^{\circ}C$, respectively. As $H_2S$ gas amount increased over 500 sccm, flake-like structures were developed on top of the nitriding layer and grain size of the nitriding layer were about 100 nm. The friction coefficient for the sample treated plasma sulf-nitriding under $N_2-H_2S$ gas was 0.4 - 0.5. The structure became more finer and amorphous-like along with $N_2-H_2S-C_3H_8$ gas and the nano-sized surface microstructures resulted in high hardness and significantly low friction coefficient of 0.2.

A Study on the Properties of WS $i_{x}$ Thin Film with Formation Conditions of Polycide (폴리사이드 형성 조건에 따른 WS $i_{x}$ 박막 특성에 관한 연구)

  • 정양희;강성준;김경원
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.371-377
    • /
    • 2003
  • We perform the physical analysis such that Si/W composition ratios and phosphorus distribution change in the W/S $i_{x}$ thin films according to phosphorus concentration of polysilicon and W $F_{6}$ flow rate for the formation of WS $i_{x}$ polycide used as a gate electrode. We report that these physical characteristics have effects on the contact resistance between word line and bit line in DRAM devices. RBS measurements show that for the samples having phosphorus concentrations of 4.75 and 6.0${\times}$10$^{2-}$ atoms/㎤ in polysilicon, by applying W $F_{6}$ flow rates decreases from 4.5 to 3.5 sccm, Si/W composition ratio has increases to 2.05∼2.24 and 2.01∼2.19, respectively. SIMS analysis give that phosphorus concentration of polysilicon for both samples have decreases after annealing, but phosphorus concentration of WS $i_{x}$ thin film has increases by applying W $F_{6}$ flow rates decreases from 4.5 to 3.5 sccm. The contact resistance between word line and bit line in the sample with phosphorus concentration of 6.0 ${\times}$ 10$^{20}$ atoms/㎤ in polysilicon is lower than the sample with 4.75 ${\times}$ 10$^{20}$ atoms/㎤ After applying W $F_{6}$ flow rates decreases from 4.5 to 3.5 sccm, the contact resistance has been improved dramatically from 10.1 to 2.3 $\mu$ $\Omega$-$\textrm{cm}^2$.

Electrical and Optical Characteristics of IZO Thin Films Deposited in Different Oxygen Flow Rate (산소 유량에 따른 IZO 박막의 전기적 및 광학적 특성)

  • Kwon, Su-Kyeong;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.49-54
    • /
    • 2013
  • In this study, we have investigated the effect of the substrate temperature and oxygen flow rate on the characteristics of IZO thin films for the OLED (organic light emitting diodes) devices. For this purpose, IZO thin films were deposited by RF magnetron sputtering at room temperature and $300^{\circ}C$ with various $O_2$ flow rate. In order to investigate the influences of the oxygen, the flow rate of oxygen in argon mixing gas has been changed from 0.1sccm to 0.5sccm. IZO thin films deposited at room temperature show amorphous structure, whereas IZO thin films deposited at $300^{\circ}C$ show crystalline structure having an (222) preferential orientation regardless of $O_2$ flow rate. The electrical resistivity of IZO film increased with increasing flow rate of $O_2$ under Ar+$O_2$. The change of electrical resistivity with increasing flow rate of $O_2$ was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. The electrical resistivity of the amorphous-IZO films deposited at R.T. was lower than that of the crystalline-IZO thin films deposited at $300^{\circ}C$. The change of electrical resistivity with increasing substrate temperature was mainly interpreted in terms of the charge carrier mobility rather than the charge carrier concentration. All the films showed the average transmittance over 85% in the visible range. The current density and the luminance of OLED devices with IZO thin films deposited at room temperature in 0.1sccm $O_2$ ambient gas are the highest amongst all other films. The optical band gap energy of IZO thin films plays a major role in OLED device performance, especially the current density and luminance.

유도결합 수소 플라즈마와 PECVD를 이용한 ITO/glass 기판 위 Si 나노 와이어 형성

  • Yang, Su-Hwan;Lee, Dong-Min;Kim, Jun-Yeong;Kim, Jae-Gwan;Lee, Ji-Myeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.351-351
    • /
    • 2012
  • 최근의 수 십 년 간, 실리콘 나노 와이어는 그 특수한 물성으로 인하여 큰 주목을 받아오고 있다. 또한, 나노 전자소자 개발에 있어 중요한 역할을 담당하며, 현재 실리콘은 반도체 산업 및 기술에서 핵심적인 기능을 수행하고 있기 때문에 실리콘 나노 와이어는 매우 중요하게 고려된다 [1]. 본 연구에서는 유도결합 수소 플라즈마와 PECVD를 이용한 ITO/glass위 실리콘 나노 와이어 형성을 실험하였다. 유도결합 수소 플라즈마를 이용하여 나노 사이즈의 인듐 catalyst를 형성한 후 PECVD를 이용 $SiH_4$ 가스 유량과 성장 온도를 변화시켜 그에 따른 형성 변화를 관찰하였다. Fig. 1 (a) 에서 보이는 바와 같이 $600^{\circ}C$, 30 sccm 5% $SiH_4$, 60 sccm He 조건에서 8분 동안 성장시켰을 경우와 Fig. 1 (b)의 100 sccm 5% $SiH_4$로 유량을 증가시키고 15분 동안 성장시킨 후 FE-SEM 사진을 비교 한 결과 실리콘 나노 와이어의 높이가 $31{\mu}m$로 크게 성장됨을 확인 하였다. 이는 $SiH_4$의 농도의 변화가 실리콘 나노 와이어 성장에 큰 영향을 미치고 있음을 나타내며 그에 따라 나노와이어의 높이를 조절할 수 있음을 보여주고 있다. 추가적으로 실리콘 나노 와이어 성장을 위한 인듐 catalyst 형성과 이를 이용한 ITO 기판위 실리콘 나노 와이어 성장에 따른 광학적 특성 및 XRD 분석 결과 또한 논의 하고자 한다.

  • PDF

Nano-Indenter를 이용한 W-N 확산방지막의 Stress 거동 연구

  • Lee, Gyu-Yeong;Kim, Su-In;Kim, Ju-Yeong;Gwon, Gu-Eun;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.315-316
    • /
    • 2012
  • 반도체와 금속배선의 확산을 방지하기 위한 확산방지막의 필요성이 대두되고 있으며, 이에 대한 연구는 많은 연구 그룹에서 진행중에 있다. 하지만 이러한 연구의 대부분은 전기적, 결정학적 특성에 대하여 안전성 및 재료학적 연구에 국한되어 진행되어졌다. 본 연구그룹은 텅스텐(W)을 질화시킨 W-N 확산방지막에 대하여 연구를 진행하였고, 역시 결정학적 특성에 대한 열적인 안전성을 주로 연구하였으나, 본 연구에서는 W-N 박막의 나노영역에 대한 기계적 특성 평가에 주안점을 두어 W-N 박막의 stress를 nano-indenter 기법을 이용하여 측정하고자하였다. 특히 공정시간의 단축 효과 등의 이유로 박막의 두께를 감소시키는 현재 추세에 맞춰 더 얇은 W-N 확산방지막을 제작하였으며, 이에 대한 분석을 실시하였다. W-N 확산방지막은 Ar(Argonne), $N_2$ (nitrogen) 총유량을 40 sccm으로 고정하여, 질소 유입 조건을 0, 0.5, 1 sccm 으로 변화시켜 Si (silicon) (100) 기판 위에 rf (radio-frequency) magnetron sputter를 이용하여 증착하였다. 이때 W-N 박막의 두께를 30, 100 nm로 달리하여 증착하였으며, 증착된 박막은 질소 분위기 $600^{\circ}C$에서 30분간 열처리하였다. 증착된 시료는 nano-indent를 통하여 표면으로부터 10 nm 부근의 극 표면 물성을 측정하였다. 측정 결과, $N_2$ 가스의 유량을 0.5 sccm 흘려주면서 증착한 W-N 박막이 $N_2$가스를 흘려주지 않은 W 박막과 비교하여 압축응력을 덜 받아 비교적 열에 대하여 안정적임을 확인하였다. 또 30 nm 두께의 W-N 박막이 100 nm 두께의 W-N 박막보다 더 기계적으로 안정적인 상태임을 확인하였다.

  • PDF

Indium Tin Oxide(ITO) Thin Film Deposition on Polyethylene Terephthalate(PET) Using Ion Beam Assisted Deposition(IBAD)

  • Bae, J.W.;Kim, H.J.;Kim, J.S.;Lee, Y.H.;Lee, N.E.;Yeom, G.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.81-83
    • /
    • 2000
  • Tin-doped indium oxide(ITO) thin films were deposited on polyethylene terephthalate(PET) at room temperature by oxygen ion beam assisted evaporator system and the effects of oxygen gas flow rate on the properties of room temperature ITO thin films were investigated. Plasma characteristics of the ion gun such as oxygen ions and atomic oxygen radicals as a function of oxygen flow rate were investigated using optical emission spectroscopy(OES). Faraday cup also used to measure oxygen ion density. The increase of oxygen flow rate to the ion gun generally increase the optical transmittance of the deposited ITO up to 6sccm of $O_2$ and the further increase of oxygen flow rate appears to saturate the optical transmittance. In the case of electrical property, the resistivity showed a minimum at 6 sccm of $O_2$ with the increase of oxygen flow rate. Therefore, the improved ITO properties at 6 sccm of $O_2$ appear to be more related to the incorporation of low energy oxygen radicals to deposited ITO film rather than the irradiation of high energy oxygen ions to the substrate. At an optimal deposition condition, ITO thin films deposited on PET substrates showed the resistivity of $6.6{\times}10^{-4}$ ${\Omega}$ cm and optical transmittance of above 90%.

  • PDF

High Temperature Gas Leak Behavior of Glass-Ceramic Fiber Composite Seals for SOFC Applications (SOFC용 유리-세라믹섬유 복합기밀재의 고온 기체누설 거동)

  • Lee, Jae-Chun;Kwon, Hyuk-Chon;Kwon, Young-Pil;Park, Sung;Jang, Jin-Sik;Lee, Jongho;Kim, Joosun;Lee, Hae-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.842-845
    • /
    • 2005
  • Glass composites containing ceramic fiber have been developed for Solid Oxide Fuel Cell (SOFC) seals. Effect of glass type, loading pressure and thermal cycle the leak rates of composite seals was investigated. Seal performance of two commercial glasses was compared with that of $SiO_2BaO-B_2O_3$ glass synthesized in this work. The leak rate for seals made of pyrex(R) increases from $\~0.0005\;to\;\~0.004sccm/cm$ as the gas pressure increases from 10 to 50 kPa. The soda lime silicate glass seal shows the leak rate two times higher than the one made of pyrex(R) or $SiO_2BaO-B_2O_3$ glass. The viscosity of glass at the seal test temperature is presumed to affect the leak rate of the glass seal. As the applied loading pressure increases from 0.4 to 0.8 MPa at $750^{\circ}C$, the leak rate decreases from 0.038 to 0.024 sccm/cm for composite seals. It has been found that during 50 thermal cycles between $450^{\circ}C\;to\;700^{\circ}C$ leak rates remained almost constant, ranging from 0.025 to 0.03sccm/cm. The results showed an excellent thermal cycle stability as well as sealability of the glass matrix ceramic fiber composite seals.

Distance between source and substrate and growth mode control in GaN nanowires synthesis (Source와 기판 거리에 따른 GaN nanowires의 합성 mode 변화 제어)

  • Shin, T.I.;Lee, H.J.;Kang, S.M.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.10-14
    • /
    • 2008
  • We synthesized GaN nanowires with high quality using the vapor phase epitaxy technique. The GaN nanowires were obtained at a temperature of $950^{\circ}C$. The Ar and $NH_3$ flow rates were 1000 sccm and 50 sccm, respectively. The shape of the GaN nanowires was confirmed through FESEM analysis. We were able to conclude that the GaN nanowires synthesized via vapor-solid (VLS) mechanism when the source was closed to the substrate. On the other side, the VS mechanism changed to vapor-liquid-solid (VLS) as the source and the substrate became more distant. Therefore, we can suggest that the large amount of Ga source from initial growth interrupt the role of catalyst on the substrate.