• Title/Summary/Keyword: scatter radiation

Search Result 126, Processing Time 0.02 seconds

A Study of Radiation Dose and Quality by Using Added Filtration in Chest Radiography (흉부(胸部) X선촬영시(線撮影時) 부가여과사용(附加濾過使用)에 따른 선양(線量)과 선질(線質)에 관(關)한 연구(硏究))

  • You, Byung-Hun;Chu, Sung-Sil;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.10 no.1
    • /
    • pp.13-23
    • /
    • 1987
  • Author has studied for finding the method of decreasing the radiation dose and increasing diagnostic range in chest X-ray radiography. The study for the added filter thickness from half value layer to 1/8 value layer by decreasing curve and research for the exposure factors, decreasing ratio of radiation dose, ratio of scatter ray and image quality in chest X-ray radiography. The results were as follows: 1. By using the rare earth intensifying screen system at 120 Kvp, the sensitivity is increased by times and the exposure ratio is decreased 0.22 by comparison with the $CaWO_{4}$ intensifying screen system at 80 Kvp. 2. By using Al added filter of 1/8 value layer, the scatter ray is increased more than no filter, But the scatter ray is decreased more in $G_{4}/RxOG$ intensifying system than in LT-II/Rx intensifying system. 3. At 120 Kvp, the image quality value of $G_{4}/RxOG$ system is increased more than LT-II/Rx system compared with slight decreasing image quality value at 80 Kvp. Concluded that by using the added filter could decrease the radiation dose by 1/3 and obtain effective image quality with the added filter at high voltage hard exposure.

  • PDF

A study on the radiation exposure of simple abdomen Radiation in Radiography (복부 단순 방사선 검사 시 피폭선량에 대한 연구)

  • Yeo, Jin-Dong;Kim, Mi-Sook
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.3
    • /
    • pp.5-10
    • /
    • 2007
  • This study was performed to measure about exposure dose during simple abdmon radiation radiography. The exposure dose was measured by PDD, surface dose, respectively. The result was as followed: 1. When tube voltage were increased with 60-85kv, surface dose were increased. When FFD(focus film distance) at the 50-150cm and mAs were increased, surface dose were decreased. 2. The percentage depth dose(PDD) were appeared 50% below depth dose at 4cm with 60-75kv, and 6cm depth with 80-85kv, 5% below depth dose at 12cm with 60kv, and depth with 65-85kv. 3. The percentage forward scatter increased from 10% to 11.78% at the 60-85kv. The back scatter dose were increase from 25% to 37% at the 60-85kv. The side scatter dose were affected to heel effect.

  • PDF

How Effective Are Radiation Reducing Gloves in C-arm Fluoroscopy-guided Pain Interventions?

  • Kim, Ah Na;Chang, Young Jae;Cheon, Bo Kyung;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.27 no.2
    • /
    • pp.145-151
    • /
    • 2014
  • Background: The physician's hands are close to the X-ray field in C-arm fluoroscopy-guided pain interventions. We prospectively investigated the radiation attenuation of Proguard RR-2 gloves. Methods: In 100 cases, the effective doses (EDs) of two dosimeters without a radiation-reducing glove were collected. EDs from the two dosimeters-one dosimeter wrapped with a glove and the other dosimeter without a glove-were also measured at the side of the table (Group 1, 140 cases) and at a location 20 cm away from the side of the table (Group 2, 120 cases). Mean differences such as age, height, weight, radiation absorbed dose (RAD), exposure time, ED, and ratio of EDs were analyzed. Results: In the EDs of two dosimeters without gloves, there were no significant differences ($39.0{\pm}36.3{\mu}Sv$ vs. $38.8{\pm}36.4{\mu}Sv$) (P = 0.578). The RAD ($192.0{\pm}182.0radcm^2$) in Group 2 was higher than that ($132.3{\pm}103.5radcm^2$) in Group 1 (P = 0.002). The ED ($33.3{\pm}30.9{\mu}Sv$) of the dosimeter without a glove in Group 1 was higher than that ($12.3{\pm}8.8{\mu}Sv$) in Group 2 (P < 0.001). The ED ($24.4{\pm}22.4{\mu}Sv$) of the dosimeter wrapped with a glove in Group 1 was higher than that ($9.2{\pm}6.8{\mu}Sv$) in Group 2 (P < 0.001). No significant differences were noted in the ratio of EDs ($73.5{\pm}6.7%$ vs. $74.2{\pm}9.3%$, P = 0.469) between Group 1 and Group 2. Conclusions: Proguard RR-2 gloves have a radiation attenuation effect of 25.8-26.5%. The radiation attenuation is not significantly different by intensity of scatter radiation or the different RADs of C-arm fluoroscopy.

Effects of collimator on imaging performance of Yttrium-90 Bremsstrahlung photons: Monte Carlo simulation

  • Kim, Minho;Bae, Jae Keon;Hong, Bong Hwan;Kim, Kyeong Min;Lee, Wonho
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.539-545
    • /
    • 2019
  • Yttrium-90 is a useful therapeutic radioisotope for tumor treatment because of its high-energy-emitting beta rays. However, it has been difficult to select appropriate collimators and main energy windows for Y-90 Bremsstrahlung imaging using gamma cameras because of the broad energy spectra of Y-90. We used a Monte Carlo simulation to investigate the effects of collimator selection and energy windows on Y-90 Bremsstrahlung imaging. We considered both MELP and HE collimators. Various phantoms were employed in the simulation to determine the main energy window using primary-to-scatter ratios (PSRs). Imaging performance was evaluated using spatial resolution indices, imaging counts, scatter fractions, and contrast-to-noise ratios. Collimator choice slightly affected energy spectrum shapes and improved PSRs. The HE collimator performed better than the MELP collimator on all imaging performance indices (except for imaging count). We observed minor differences in SR and SF values for the HE collimator among the five simulated energy windows. The combination of an HE collimator and improved-PSR energy window produced the best CNR value. In conclusion, appropriate collimator selection is an important component of Bremsstrahlung Y-90 photon imaging and main energy window determination. We found HE collimators to be more appropriate for improving the imaging performance of Bremsstrahlung Y-90 photons.

A Study on measurement of scattery ray of Computed Tomography (전산화 단층촬영실의 산란선 측정에 대한 연구)

  • Cho, Pyong-Kon;Lee, Joon-Hyup;Kim, Yoon-Sik;Lee, Chang-Yeop
    • Journal of radiological science and technology
    • /
    • v.26 no.2
    • /
    • pp.37-42
    • /
    • 2003
  • Purpose : Computed tomographic equipment is essential for diagnosis by means of radiation. With passage of time and development of science computed tomographic was developed time and again and in future examination by means of this equipment is expected to increase. In this connection these authors measured rate of scatter ray generation at front of lead glass for patients within control room of computed tomographic equipment room and outside of entrance door for exit and entrance of patients and attempted to ind out method for minimizing exposure to scatter ray. Material and Method : From November 2001 twenty five units of computed tomographic equipments which were already installed and operation by 13 general hospitals and university hospitals in Seoul were subjected to this study. As condition of photographing those recommended by manufacturer for measuring exposure to sauter ray was use. At the time objects used DALI CT Radiation Dose Test Phantom fot Head (${\oint}16\;cm$ Plexglas) and Phantom for Stomache(${\oint}32\;cm$ Plexglas) were used. For measurement of scatter ray Reader (Radiation Monitor Controller Model 2026) and G-M Survey were used to Survey Meter of Radical Corporation, model $20{\times}5-1800$, Electrometer/Ion Chamber, S/N 21740. Spots for measurement of scatter ray included front of lead glass for patients within control room of computed tomographic equipment room which is place where most of work by gradiographic personnel are carried out and is outside of entrance door for exit and entrance of patients and their guardians and at spot 100 cm off from isocenter at the time of scanning the object. The results : Work environment within computed tomography room which was installed and under operation by each hospital showed considerable difference depending on circumstances of pertinent hospitals and status of scatter ray was as follows. 1) From isocenter of computed tomographic equipment to lead glass for patients within control room average distance was 377 cm. At that time scatter ray showed diverse distribution from spot where no presence was detected to spot where about 100 mR/week was detected. But it met requirement of weekly tolerance $2.58{\times}10^{-5}\;C/kg$(100 mR/week). 2) From isocenter of computed tomographic equipment to outside of entrance door where patients and their guardians exit and enter was 439 cm in average, At that time scatter ray showed diverse distribution from spot where almost no presence was detected to spot with different level but in most of cases it satisfied requirement of weekly tolerance of $2.58{\times}10^{-6}\;C/kg$(100 mR/week). 3) At the time of scanning object amount of scatter ray at spot with 100 cm distance from isocenter showed considerable difference depending on equipments. Conclusion : Use of computed tomographic equipment as one for generation of radiation for diagnosis is increasing daily. Compared to other general X-ray photographing field of diagnosis is very high but there is a high possibility of exposure to radiation and scatter ray. To be free from scatter ray at computed tomographic equipment room even by slight degree it is essential to secure sufficient space and more effort should be exerted for development of variety of skills to enable maximum photographic image at minimum cost.

  • PDF

The Response of Fluorescence Meter according to X-ray dose and quality (선량과 선질에 따른 형광량계 응답특성)

  • Kim, Jung-Min;Kim, Myung-Joon;Yoon, Jong-Min
    • Journal of radiological science and technology
    • /
    • v.18 no.1
    • /
    • pp.71-75
    • /
    • 1995
  • In order to establish the photographic effects and sensitivity of various screens, fluorescence meter is used with convenience. When the radiation quality has been fixed the fluorescence has increased in proportion to X-ray dose. However, the response of fluorescence meter has the dependency of X-ray quality in accordance with KVP. as well as the difference of screen and scatter fraction can influence on the response of fluorescence meter. Using accurate fluorescence meter as a radiation detecter and as for a proper supervision the sensitive materials, we have to aware of the meter's dependency of X-ray quality and the scatter fraction.

  • PDF

A Study on the Distribution of Scatter Ray in Chest Radiography of a Health Examination Bus (건강검진 차량 내 흉부 방사선검사 시 공간산란선 분포 연구)

  • Cho, Ji-Hwan;Jin, Seong-jin;Min, Byeong-In
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.377-383
    • /
    • 2017
  • The purpose of this study was to evaluate the distribution of spatial scatter ray on the chest radiographs of patients on health examination bus. In this paper, we propose a method for minimize unnecessary exposure by measuring the scattered dose after exposure the actual subject and comparing the body mass index (BMI) with the tube current amount mAs. The results of this study showed that the mean BMI of the subjects was $23.31{\pm}3.12$. The mean mAs value was $2.92{\pm}1.19$, which males was higher than females. The mean value of the scatter ray at position 1 in the radiography room was $771.81{\pm}151.15{\mu}Sv/hr$. The mean value of the scatter rays at the position 2 outside the entrance of the radiography room was measured as $53.86{\pm}25.66{\mu}Sv/hr$. As the BMI and mAs was increase the spatial scatter dose was increased at position 1 and position 2 in the photographing room. In order to minimize the exposure dose of scatter ray, radiation workers should shoot the radiation as low as possible within the range that does not impair the quality of the image. It will be necessary to make efforts to not wait for a waiting person near the entrance door of the photographing room.

A NUMERICAL SIMULATION OF INFRARED RADIATION OF EXHAUST PLUME (배기 후류의 적외선 방사 특성 모사를 위한 수치적 연구)

  • Zhang, Y.;Yang, Y.R.;Park, G.R.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.422-425
    • /
    • 2010
  • The infrared radiation of exhaust plume was investigated numerically by a finite volume method (FVM) with anisotropic scattering particles. The exhaust plume is considered to absorb, emit and scatter radiant energy isotropically as well as anisotropically. The spatial and spectral distribution characteristics were obtained for the detection wavelength with $2.7{\mu}m$. The radiative intensities were presented for the different detective direction.

  • PDF

Relative ratio about dose value of thermoluminescence and optical stimulated luminescence dosimeter according to exposed condition in diagnostic radiation (진단방사선의 노출 조건에 따른 열형광선량계와 광자극형광 선량계의 선량값 상대비)

  • Kang, Yeonghan;Kwon, Soonmu;Kim, BooSoon
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.499-505
    • /
    • 2012
  • The purpose of this study was to find out the difference of radiation dose value through energy, exposure number, fluoroscopy time, the number of days of exposed scatter X-ray when TLD and OSLD is used in diagnostic radiology. The difference of value were measured by relative ratio and interval. Energy makes high relative ratio of TLD($1.81{\pm}0.41$) than OSLD($1.40{\pm}0.26$), exposure number makes high of OSLD($1.40{\pm}0.26$) than TLD($2.10{\pm}0.10$). There are no significant differences between relative ratio of TLD and OSLD in fluoroscopy time and the number of days of exposed scatter X-ray. But interval of relative ratio in the number of days of exposed scatter X-ray was narrowed in less 0.2. That means, the measurement of scatter X-ray could more confident in TLD and OSLD than the measurement of direct ray. In conclusion, we have to recognize the relative ratio of TLD and OSLD could be vary depending on exposed condition of radiation. And in some cases, double test of TLD and OSLD get more creditable results of dose value.