• Title/Summary/Keyword: scanning mirror

Search Result 97, Processing Time 0.027 seconds

A study of ultra-precision interrupt machining for an polygon mirror (초정밀 단속 절삭을 이용한 다각형 미러의 절삭특성에 관한 연구)

  • Park, Soon-Sub;Lee, Ki-Young;Kim, Hyoung-Mo;Lee, Jae-Seol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.65-70
    • /
    • 2007
  • Generally, the core component of small precise optical device demands high accuracy of manufacturing processes. Although, the geometry of it is simple, the manufacturing technique to materialize is categorized as the ultra-precision machining and it must be done with the specialized machines and by the trained operator. Typical examples of small precise optical device are laser printer and phone camera. As a core part of laser printer, polygon mirror is used in laser scanning unit(LSU). It couldn't be fabricated with conventional machine but specified machine for polygon mirror machining. In this study, Polygon mirror with 16 surfaces was manufactured in the process of ultra-precision fly-cutting with Al material and investigated optimum machining conditions in terms of feedrate, pitch per cycle and depth of cut. Owing to process of polishing has bad influence on reflection angle, surface roughness, $R_{max}$=10nm, and form error, $Ra={\lambda}/10({\lambda}=632nm)$, are prerequisites for polygon mirror.

  • PDF

Super multi-view 3-D display system based on focused light Array using reflective vibrating scanner array (ViSA)

  • Ho-In Jeon;Nak-Hee Jung;Jin-San Choi;Young Jung;Young Huh
    • Broadcasting and Media Magazine
    • /
    • v.6 no.2
    • /
    • pp.84-101
    • /
    • 2001
  • In this paper, we present a primitive system design of a super multi-view(SMV) 3-D display system based on a focused light array(FLA) concept using reflective vibrating scanner array(ViSA). The parallel beam scanning using a vibrating scanner array is performed by moving left and right an array of curvature-compensated mirrors or diamond-ruled reflective grating attached to a vibrating membrane. The parallel laser beam scanner array can replace the polygon mirror scanner which has been used in the SMV 3-D display system based on the focused light array(FLA) concept proposed by Kajiki at TAO(Telecommunications) Advancement Organization). The proposed system has great advantages in the sense that it requires neither huge imaging optics nor mechanical scanning pals. Some mathematical analyses and fundamental limitations of the proposed system are presented. The proposed vibrating scanner array, after some modifications and refinements, may replace polygon mirror-based scanners in the near future.

  • PDF

Long Distance and High Resolution Three-Dimensional Scanning LIDAR with Coded Laser Pulse Waves (레이저 펄스 부호화를 이용한 원거리 고해상도 3D 스캐닝 라이다)

  • Kim, Gunzung;Park, Yongwan
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.133-142
    • /
    • 2016
  • This paper presents the design and simulation of a three-dimensional pixel-by-pixel scanning light detection and ranging (LIDAR) system with a microelectromechanical system (MEMS) scanning mirror and direct sequence optical code division multiple access (DS-OCDMA) techniques. It measures a frame with $848{\times}480$ pixels at a refresh rate of 60 fps. The emitted laser pulse waves of each pixel are coded with DS-OCDMA techniques. The coded laser pulse waves include the pixel's position in the frame, and a checksum. The LIDAR emits the coded laser pulse waves periodically, without idle listening time to receive returning light at the receiver. The MEMS scanning mirror is used to deflect and steer the coded laser pulse waves to a specific target point. When all the pixels in a frame have been processed, the travel time is used by the pixel-by-pixel scanning LIDAR to generate point cloud data as the measured result.

A Study on Generation of Laser Scanning Path and Scanning Control (레이저 주사 경로 생성 및 주사 제어에 관한 연구)

  • 최경현;최재원;김대현;도양회;이석희;김성종;김동수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1295-1298
    • /
    • 2004
  • Selective Laser Sintering(SLS) method is one of Rapid Prototyping(RP) technologies. It is used to fabricate desirable part to sinter powder and stack the fabricated layer. To develop this SLS machine, it needs effective scanning path and the development of scanning device. This paper shows how to make fast scanning path with respect to scan spacing, laser beam size and scanning direction from 2-dimensional sliced file generated in commercial CAD/CAM software. Also, we develop the scanning device and its control algorithm to precisely follow the generated scanning path. Scanning path affects precision and total machining time of the final fabricated part. Sintering occurs using infrared laser which has high thermal energy. As a result, shrinkage and curling of the fabricated part occurs according to thermal distribution. Therefore, fast scanning path generation is needed to eliminate the factors of quality deterioration. It highly affects machining efficiency and prevents shrinkage and curling by relatively lessening the thermal distribution of the surface of sintering layer. To generate this fast scanning path, adaptive path generation is needed with respect to the shape of each layer, and not simply x, y scanning, but the scanning of arbitrary direction must be enabled. This paper addresses path generation method to focus on fast scanning, and development of scanning system and control algorithm to precisely follow generated path.

  • PDF

An Optical Design of Off-axis Four-mirror-anastigmatic Telescope for Remote Sensing

  • Li, Xing Long;Xu, Min;Ren, Xian Dong;Pei, Yun Tian
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.243-246
    • /
    • 2012
  • An off-axis four-mirror-anastigmatic telescope is presented here which is composed of two aspheric surfaces and two spherical surfaces. The entrance pupil diameter is 290 mm and the stop is located at the primary mirror. The effective focal length is 900 mm. The strip field of view for the telescope is $15^{\circ}{\times}0.2^{\circ}$ and if the telescope is launched into an orbit about 400 km altitude, the observed range width will be more than 105 km within a scene without any other auxiliary scanning instrument. The spectral range can be as wide as from visual wave band to infrared wave band in the mirror system. This telescope can be used for environmental monitoring with different detectors whose pixel is adapted to the optical resolution. In this paper, the spectral range is chosen as 3.0 -5.0 ${\mu}m$, and center distance of the pixel is 30 ${\mu}m$. And the image quality is near the diffraction limit.

Design of Electromagnetic Moving-coil type Voice Coil Motor for Scanning mirror of Barcode reader (바코드 리더용 스캐닝 미러를 위한 무빙 코일 타입 VCM 설계)

  • Shin, Bu Hyun;Lee, Jeong Woo;Shim, Hyun Ho;Park, Sang Goo;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • A voice coil actuator with moving coil type for scanning mirror system of barcode reader has been developed. The actuator has a simple structure including a magnet, a coil and a pin. The performance of the actuator is analyzed by a linearized theoretical model. And the dynamic performance of the proposed actuator is predicted through motor constant and restoring constant obtained by finite element simulations. The theoretical model was verified by the prototype which has 64 Hz resonance frequency and 60 deg reflecting angle. We also discovered that that 3 V input can make the actuator rotate over 61.8 deg reflecting angle at 50 Hz resonance frequency. The proposed actuator can simplify its driving configuration because of its implementation of open-loop control.

A Study on 3D Printer Using Polygon Mirror (폴리곤 미러를 이용한 3D 프린터에 관한 연구)

  • Kwon, Dong-hyun;Heo, Sung-uk;Lim, Ji-yong;Oh, Am-suk;Kim, Wan-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.142-144
    • /
    • 2016
  • Recent promising technologies of the manufacturing sector interest, and the interest in 3D printing that is expected to cause a huge ripple effect rapidly, and various types of products advertised in accordance with the falling price of 3D printers is spreading. However, the personal 3D printers that are currently being advertised is used for Injection output of the simple type that does not require a high processing precision in accordance with the limitation of technical performance, and consumer satisfaction is very low. In this paper, we propose a 3D printer, 3D precision to overcome existing limitations in the way the printer's high SLA 3D printer that combines injection method and the LSU (Laser Scanning Unit) in the office laser printer polygon mirror scanning method. 3D printers which are proposed to improve the accuracy and manufacturing speed is expected to replace the existing entry-level 3D printer.

  • PDF

Mirror Surface Grinding Characteristics and Mechanism of Carbon Fiber Reinforced Plastics (탄소섬유강화 플라스틱의 경면연삭가공 특성)

  • 박규열;이대길;중천위웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2514-2522
    • /
    • 1994
  • The mirror surface grinding of carbon fiber reinforced plastics(CFRP) was realized by using the metal bonded super-abrasive micro grain wheel with electrolytic in-process dressing(ELID). The maximum surface roughness $R_{max}$ of CFRP which was obtained with #6,000 wheel, was 0.65 $\mu{m}$, which was rougher surface finish compared to those of hard and brittle materials with the same mesh number wheel with ELID. The grinding performance was much dependent on the grinding direction and the best surface roughness was obtained at $90^{\circ}C$ grinding with fiber direction. The spark-out effect on the surface improvement was significant when smaller mesh number grinding wheels were used. From the surface observations of CFRP with scanning electron microscope(SEM) and Auger electron spectroscopy(AES), it was found that the mirror surface grinding of CFRP was generated by the homogenization due to carbonization of the ground surface and smearing of chips composed of the carbon fiber and carbonized epoxy resin into the ground surface.

Optical system design for laser scanning unit (Laser Scanning Unit용 광학계 설계)

  • 임천석
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 1999
  • Laser Scanning Unit (LSU), which is one of the core parts of laser printer, consists of LD Module, cylinder lens, polygon mirror and f$\theta$ lens. After making an initial design on each part, we optimized the one which satisfies the user specification. The optimized optical system has diffraction limited performance for the slit size of 2.7 mm$\times$1.6 mm, f$\theta$ characteristics less than 0.3% and field curvature less 1.2 mm. We also calcurate tolerance of each part based on RSS(Root Sum Square) method to manufacture LSU for mass production.

  • PDF

High-speed Two-photon Laser Scanning Microscopy Imaging of in vivo Blood Cells in Rapid Circulation at Velocities of Up to 1.2 Millimeters per Second

  • Boutilier, Richard M.;Park, Jae Sung;Lee, Ho
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.595-605
    • /
    • 2018
  • The two-photon process of microscopy provides good spatial resolution and optical sectioning ability when observing quasi-static endogenous fluorescent tissue within an in vivo animal model skin. In order to extend the use of such systems, we developed a two-photon laser scanning microscopy system capable of also capturing $512{\times}512$ pixel images at 90 frames per second. This was made possible by incorporating a 72 facet polygon mirror which was mounted on a 55 kRPM motor to enhance the fast-scan axis speed in the horizontal direction. Using the enhanced temporal resolution of our high-speed two-photon laser scanning microscope, we show that rapid processes, such as fluorescently labeled erythrocytes moving in mouse blood flow at up to 1.2 mm/s, can be achieved.