• Title/Summary/Keyword: scanning electron microscope(SEM) image

Search Result 93, Processing Time 0.027 seconds

Effects of Oxide Layer Formed on TiN Coated Silicon Wafer on the Friction and Wear Characteristics in Sliding (미끄럼운동 시 TiN 코팅에 형성되는 산화막이 마찰 및 마멸 특성에 미치는 영향)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.260-266
    • /
    • 2002
  • In this study, the effects of oxide layer farmed on the wear tracks of TiN coated silicon wafer on friction and wear characteristics were investigated. Silicon wafer was used for the substrate of coated disk specimens, which were prepared by depositing TiN coating with 1 ${\mu}{\textrm}{m}$ in coating thickness. AISI 52100 steel ball was used fur the counterpart. The tests were performed both in air for forming oxide layer on the wear track and in nitrogen to avoid oxidation. This paper reports characterization of the oxide layer effects on friction and wear characteristics using X-ray diffraction(XRD), Auger electron spectroscopy(AES), scanning electron microscopy (SEM) and multi-mode atomic force microscope(AFM).

Improved Compressive·Flexural Performance of Hybrid Fiber-Reinforced Mortar Using Steel and Carbon Fibers (강 및 탄소 섬유를 사용한 하이브리드 섬유보강 모르타르의 압축·휨성능 향상)

  • Heo, Gwang-Hee;Park, Jong-Gun;Seo, Dong-Ju;Koh, Sung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.48-59
    • /
    • 2021
  • In this study, experiments were conducted to investigate the compressive·flexural performances of single fiber-reinforced mortar (FRM) using only steel fiber or carbon fiber which has different material properties as well as hybrid FRM using a mixture of steel and carbon fibers. The mortar specimens incorporated steel and carbon fibers in the mix proportions of 1+0%, 0.75+0.25%, 0.5+0.5%, 0.25+0.75% and 0+1% by volume at a total volume fraction of 1.0%. Their mechanical performance was compared and examined with a plain mortar without fiber at 28 days of age. The experiments of mortar showed that the hybrid FRM using a mixture of 0.75% steel fibers + 0.25% carbon fibers had the highest compressive and flexural strength, confirming by thus the synergistic reinforcing effect of the hybrid FRM. On the contrast, in the case of hybrid FRM using a mixture of 0.5% steel fibers + 0.5% carbon fibers witnessed the highest flexural toughness, suggesting as a result the optimal fiber mixing ratio of hybrid FRM to improve the strength and flexural toughness at the same time. Moreover, the fracture surface was observed through a scanning electron microscope (SEM) for image analysis of the FRM specimen. These results were of great help for images analysis of hybrid reinforcing fibers in cement matrix.

Large Area Bernal Stacked Bilayer Graphene Grown by Multi Heating Zone Low Pressure Chemical Vapor Deposition

  • Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.239.2-239.2
    • /
    • 2015
  • Graphene is a most interesting material due to its unique and outstanding properties. However, semi-metallic properties of graphene along with zero bandgap energy structure limit further application to optoelectronic devices. Recently, many researchers have shown that band gap can be induced in the Bernal stacked bilayer graphene. Several methods have been used for the controlled growth of the Bernal staked bilayer graphene, but it is still challenging to control the growth process. In this paper, we synthesize the large area Bernal stacked bilayer graphene using multi heating zone low pressure chemical vapor deposition (LPCVD). The synthesized bilayer graphenes are characterized by Raman spectroscopy, optical microscope (OM), scanning electron microscopy (SEM). High resolution transmission electron microscopy (HRTEM) is used for the observation of atomic resolution image of the graphene layers.

  • PDF

Experimental Study on the Combustion Characteristics of Magnesium using Infrared Thermography and FE-SEM (적외선 열화상법 및 FE-SEM을 활용한 마그네슘 연소특성에 관한 실험적 연구)

  • Lee, Jun-Sik;Nam, Ki-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.927-934
    • /
    • 2020
  • Magnesium powder has been widely used in various industries because it is light weight and extremely high mechanical strength including aeronautics and chemicals. However, magnesium, as a combustible metal, poses serious safety issues such as fires and explosions if it is not managed properly. Especially, magnesium's max adiabatic flame temperature is 3,340℃ and it is impossible to extinguish it by using water, CO2 and Halonagents. The aim of this study is to identify the combustion characteristics of magnesium powder. We carried out a combustion experiment, using 1 kg of magnesium (purity > 99 %, particle < 150 ㎛). The features of the magnesium burning process were scrutinized using infrared thermal image analysis. Also, a field-emission scanning electron microscope (FE-SEM) were used employed to analyze particulate composites and properties. It concludes the significant tendency of magnesium fire and light, combustion carbide's particle characteristics. This study contributes to make better prevention and response manners to magnesium fires, as well as fire investigation measures.

An automated determination method of particulate matter on food surface (식품표면에 부착된 미세먼지의 정량법)

  • Park, Sun-Young;Bang, Bong-Jun;Lim, Dayoung;Chung, Donghwa;Lee, Dong-Un
    • Food Science and Industry
    • /
    • v.54 no.1
    • /
    • pp.29-33
    • /
    • 2021
  • Particulate matter (PM) is an air pollutant that causes serious environmental problems in Korea and other countries. The annual average PM10 concentration in Korea is around 40 ㎛/㎥, which is more than twice as high as the WHO recommended standard. When consumed with food, fine PM can pose a risk to humans. However, the risk of fine PM has been focused on the risk of fine PM introduced through the respiratory system. We investigated the quantitative measuring methods of PM10 on food surface to identify possible risk analysis of fine PM. The surfaces of food with artificially contaminated PM10 were observed with a scanning electron microscope(SEM). An automatic object-based image analysis was used to analyze the amount and size distribution of particulate matter contained in SEM micrographs.

Analysis of Heat-generating Performance, Flexural Strength and Microstructure of Conductive Mortar Mixed with Micro Steel Fiber and MWCNT (마이크로 강섬유와 MWCNT를 혼입한 전도성 모르타르의 발열성능, 휨강도 및 미세구조 분석 )

  • Beom-gyun Choi;Gwang-hee Heo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.47-58
    • /
    • 2024
  • This study were conduced experimentally to analyze the heat-generating performance, flexural strength, and microstructure of conductive mortar mixed with micro steel fiber and multi-wall carbon nanotube (MWCNT). In the conductive mortar heat-generating performance and flexural strength tests, the mixing concentration of MWCNT was selected as 0.0wt%, 0.5wt%, and 1.0wt% relative to the weight of cement, and micro steel fibers were mixed at 2.0vol% relative to the volume. The performance experiments were conducted with various applied voltages (DC 10V, 30V, 60V) and different electrode spacings (40 mm, 120 mm) as parameters, and the flexural strength was measured at the curing age of 28 days and compared and analyzed with the normal mortar. Furthermore, the surface shape and microstructure of conductive mortar were analyzed using a field emission scanning electron microscope (FE-SEM). The results showed that the heat-generating performance improved as the mixing concentration of MWCNT and the applied voltage increased, and it further improved as the electrode spacing became narrower. However, even if the mixing concentration of MWCNT was added up to 1.0 wt%, the heat-generating performance was not significantly improved. As a result of the flexural strength test, the average flexural strength of all specimens except the PM specimen and the MWCNT mixed specimens was 4.5 MPa or more, showing high flexural strength due to the incorporation of micro steel fibers. Through FE-SEM image analysis, Through FE-SEM image analysis, it was confirmed that a conductive network was formed between micro steel fibers and MWCNT particles in the cement matrix.

Methods to Measure the Critical Dimension of the Bottoms of Through-Silicon Vias Using White-Light Scanning Interferometry

  • Hyun, Changhong;Kim, Seongryong;Pahk, Heuijae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.531-537
    • /
    • 2014
  • Through-silicon vias (TSVs) are fine, deep holes fabricated for connecting vertically stacked wafers during three-dimensional packaging of semiconductors. Measurement of the TSV geometry is very important because TSVs that are not manufactured as designed can cause many problems, and measuring the critical dimension (CD) of TSVs becomes more and more important, along with depth measurement. Applying white-light scanning interferometry to TSV measurement, especially the bottom CD measurement, is difficult due to the attenuation of light around the edge of the bottom of the hole when using a low numerical aperture. In this paper we propose and demonstrate four bottom CD measurement methods for TSVs: the cross section method, profile analysis method, tomographic image analysis method, and the two-dimensional Gaussian fitting method. To verify and demonstrate these methods, a practical TSV sample with a high aspect ratio of 11.2 is prepared and tested. The results from the proposed measurement methods using white-light scanning interferometry are compared to results from scanning electron microscope (SEM) measurements. The accuracy is highest for the cross section method, with an error of 3.5%, while a relative repeatability of 3.2% is achieved by the two-dimensional Gaussian fitting method.

Fabrication and Characterization of Free-Standing DBR Porous Silicon Film

  • Um, Sungyong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • Distributed Bragg reflector porous silicon of different characteristics were formed to determine their optical constants in the visible wavelength range using a periodic square wave current between low and high current densities. The surface and cross-sectional SEM images of distributed Bragg reflector porous silicon were obtained using a cold field emission scanning electron microscope. The surface image of distributed Bragg reflector porous silicon indicates that the distributions of pores are even. The cross-sectional image illustrates that the multilayer of distributed Bragg reflector porous silicon exhibits a depth of few microns and applying of square current density during the etching process results two distinct refractive indices in the contrast. Distributed Bragg reflector porous silicon exhibited a porosity depth profile that related directly to the current-time profile used in etch. Its free-standing film was obtained by applying an electro-polishing current.

Synthesis and Catalytic Applications of Ruthenium(0) Nanoparticles in Click Chemistry

  • Kumar, Avvaru Praveen;Baek, Min-Wook;Sridhar, Chirumarry;Kumar, Begari Prem;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1144-1148
    • /
    • 2014
  • Here we report a facile synthesis of ruthenium (Ru) Nanoparticles (NPs) by chemical co-precipitation method. The calcination of ruthenium hydroxide samples at $500^{\circ}C$ under hydrogen atmosphere lead to the formation of $Ru^0$ NPs. The size and aggregation of Ru NPs depends on the pH of the medium, and type of surfactant and its concentration. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope image (TEM) analyses of particles indicated the formation of $Ru^0$ NPs, and have 10 to 20 nm sizes. As-synthesized $Ru^0$ NPs are characterized and investigated their catalytic ability in click chemistry (azidealkyne cycloaddition reactions), showing good results in terms of reactivity. Interestingly, small structural differences in triazines influence the catalytic activity of $Ru^0$ nanocatalysts. Click chemistry has recently emerged to become one of the most powerful tools in drug discovery, chemical biology, proteomics, medical sciences and nanotechnology/nanomedicine. In addition, preliminary tests of recycling showed good results with neither loss of activity or significant precipitation.

The particle properties and luminescence properties of Gd2O3:Eu using solution-combustion with various Eu content were analysis (X선 검출기를 위해 특수용매 액상법으로 합성한 Gd2O3:Eu의 Europium(Eu) 함량에 따른 입자특성과 발광특성의 분석)

  • Kim, Sung-Hyun;Kim, Young-Bin;Jung, Suk-Hee;Kim, Min-Woo;Oh, Kyung-Min;Park, Ji-Gun
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.3
    • /
    • pp.11-18
    • /
    • 2008
  • In this study, the particle properties and luminescence properties of Gd2O3 nano powder with various Eu content were studied. Gd2O3:Eu nano powder was fabricated using special solvent which mixed the alcohol and the distilled water at specific ratio. This solvent by the solution method showed short fabrication time because solution time of Gd and Eu was reduced. From this experiment with Gd2O3:Eu, the particle properties og nano powder phosphor way analysed using SEM (scanning electron microscope) and EDX(Energy Dispersive X-ray). Also the luminescence properties of nano powder was measured using PL(Photoluminescence) and CL (CathodeLuminescence). The size of powder was 30nm~40nm. The magnitude of powder showed the best peak at 620nm. Among 1,3,5wt% of Eu content, the more Eu content was added in powder, the more photons wre generated. Also it shows luminescence efficiency was improved adding 5% of Eu content.

  • PDF