• Title/Summary/Keyword: scan rate

Search Result 724, Processing Time 0.022 seconds

Effects of Flow Rates and CS Factors on TOF MRA using Compressed Sensing (Compressed sensing을 이용한 TOF MRA 검사에서 Flow rate와 CS factor의 변화에 따른 영향)

  • Kim, Seong-Ho;Jeong, Hyun-Keun;Yoo, Se-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.3
    • /
    • pp.281-291
    • /
    • 2021
  • This study aimed to measure the quantitative changes in images according to the use of compressed sensing in expressing the slow flow rate in TOF MRA test using magnetic resonance imaging. This study set different blood flow rate sections by using auto-injector and flow phantom and compared changes in the SNR, CNR, SSIM, and RMSE measurements by different CS factors between TOF with CS and TOF without CS. One-way ANOVA was performed to test the effect on the image induced by the increase of the CS factor. The results revealed that TOF MRA with CS significantly decreased scan time without significantly affecting SNR and CNR compared to TOF MRA with CS. On the other hand, the differences in SSIM and RMSE between TOF with CS and TOF without CS increased as the CS factor increased. Therefore, it is necessary to efficiently reduce scan time by adapting the CS technique while considering the appropriate range of the CS factor. Additionally, more studies are needed to evaluate CS factors and the similarity precision of images further.

Analysis on Operation of Anti-Virus Systems with Real-Time Scan and Batch Scan (실시간스캔과 배치스캔을 갖춘 안티바이러스시스템의 운영 분석)

  • Yang, Won Seok;Kim, Tae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.11
    • /
    • pp.861-869
    • /
    • 2013
  • We consider an information system where viruses arrive according to a Poisson process with rate ${\lambda}$. The information system has two types of anti-virus operation policies including 'real-time scan' and 'batch scan.' In the real-time scan policy, a virus is assumed to be scanned immediately after its arrival. Consequently, the real-time scan policy assumes infinite number of anti-viruses. We assume that the time for scanning and curing a virus follows a general distribution. In the batch scan policy, a system manager operates an anti-virus every deterministic time interval and scan and cure all the viruses remaining in the system simultaneously. In this paper we suggest a probability model for the operation of anti-virus software. We derive a condition under which the operating policy is achieved. Some numerical examples with various cost structure are given to illustrate the results.

Determination of Optimal Scan Time for the Measurement of Downstream Metabolites in Hyperpolarized 13C MRSI

  • Lee, Hansol;Lee, Joonsung;Joe, Eunhae;Yang, Seungwook;Choi, Young-suk;Wang, Eunkyung;Song, Ho-Taek;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.4
    • /
    • pp.212-217
    • /
    • 2015
  • Purpose: For a single time-point hyperpolarized $^{13}C$ magnetic resonance spectroscopy imaging (MRSI) of animal models, scan-time window after injecting substrates is critical in terms of signal-to-noise ratio (SNR) of downstream metabolites. Pre-scans of time-resolved magnetic resonance spectroscopy (MRS) can be performed to determine the scan-time window. In this study, based on two-site exchange model, protocol-specific simulation approaches were developed for $^{13}C$ MRSI and the optimal scan-time window was determined to maximize the SNR of downstream metabolites. Materials and Methods: The arterial input function and conversion rate constant from injected substrates (pyruvate) to downstream metabolite (lactate) were precalibrated, based on pre-scans of time-resolved MRS. MRSI was simulated using two-site exchange model with considerations of scan parameters of MRSI. Optimal scan-time window for mapping lactate was chosen from simulated lactate intensity maps. The performance was validated by multiple in vivo experiments of BALB/C nude mice with MDA-MB-231 breast tumor cells. As a comparison, MRSI were performed with other scan-time windows simply chosen from the lactate signal intensities of pre-scan time-resolved MRS. Results: The optimal scan timing for our animal models was determined by simulation, and was found to be 15 s after injection of the pyruvate. Compared to the simple approach, we observed that the lactate peak signal to noise ratio (PSNR) was increased by 230%. Conclusion: Optimal scan timing to measure downstream metabolites using hyperpolarized $^{13}C$ MRSI can be determined by the proposed protocol-specific simulation approaches.

Cracking Susceptibility of Laser Cladding Process with Co-Based Metal Matrix Composite Powders (레이저 클래딩 공정 조건이 코발트 합금-텅스텐 카바이드 혼합 코팅층의 균열 발생에 미치는 영향)

  • Lee, Changmin;Park, Hyungkwon;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.41-46
    • /
    • 2014
  • In this study, cracking susceptibility of laser cladding was investigated according to the processing parameters such as laser power, scan speed and feeding rate with blended powders of stellite#6 and technolase40s (WC+NiCr). The solidification microstructure of clad was composed of Co-based dendrite structures with ${\gamma}+Cr7C3$ eutectic phases at the dendritic boundaries. The crack propagation showed transgranular fracture along dendritic boundaries due to brittle chrome carbide at the eutectic phases. From results of fractography experiments, the fracture surface was typical cleavage brittle fracture in the clad and substrate. The number of clad cracks, caused by a tensile stress after the solidification, increased with increase of laser power, scan speed and feeding rate. Increase of the laser power caused large pores by facilitating WC decarburizing reaction. And the pores affected increase of crack susceptibility. High scan speed caused increment of clad cracks due to thermal stress and WC particle fractures. Also, increase of the feeding rate accompanied an amount of WC particles causing crack initiation and decarburizing reaction.

Process Analysis of Melting Behaviors in Selective Laser Melting Process (선택적 레이저 용융 공정시 용융 거동에 대한 공정 분석)

  • Sung, M.Y.;Joo, B.D.;Kim, S.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.517-522
    • /
    • 2010
  • Selective laser melting (SLM) is emerged as a new manufacturing technique to directly fabricate precise parts using metallic materials. The final characteristics of a component fabricated through the SLM process are strongly dependent upon various parameters such as laser power, scan rate and pulse duration, etc. This paper, therefore, focuses on the dimensional characteristics of melted $20{\mu}m$ Fe-Cr-Ni powder by fiber laser for the selective laser melting process. With energy density decrease, the height and depth were decreased. Although the conditions are of the same energy density, the shape is different by laser power and scan rate. The shapes at various laser parameters were divided into 3 groups based on depth over height. The smooth regular shape is obtained under the conditions of $50{\mu}m$ of powder height and $15-20{\mu}s$ of pulse duration. And the laser power influenced the variation of shape more significantly than the scan rate.

A Study on the Thermal Hydraulic Analysis and B-Scan Inspection for LDIE Degradation of Carbon Steel Piping in a Nuclear Plant (원전 탄소강 배관의 액적충돌침식 손상에 대한 B-Scan 검사 및 수치해석적 분석)

  • Hwang, Kyeong Mo;Lee, Dae Young
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.218-224
    • /
    • 2012
  • Liquid droplet impingement erosion (LDIE) known to be generated in aircraft and turbine blades is recently appeared in nuclear piping. UT thickness measurements with both A-scan and B-scan UT inspection equipments were performed for a component estimated as susceptible to LDIE in feedwater heater vent system. The thickness data measured with B-Scan equipment were compared with those of A-Scan. Thermal hydraulic analysis based on ANSYS FLUENT code was performed to analyze the behavior of liquid droplets inside piping. The wall thinning rate and residual lifetime based on both existing Sanchez-Caldera equation and measuring data were also calculated to identify the applicability of the existing equation to the LDIE management of nuclear piping. Because Sanchez-Caldera equation do not consider the feature of magnetite formed inside piping, droplet size, colliding frequency, the development of new evaluation method urgently needs to manage the pipe wall thinning caused by LDIE.

FPGA Implementation of Scan Conversion Unit using SIMD Architecture and Hierarchical Tile-based Traversing Method (계층적 타일기반 탐색기법과 SIMD 구조가 적용된 스캔변환회로의 FPGA 구현)

  • Ha, Chang-Soo;Choi, Byeong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2023-2030
    • /
    • 2010
  • In this paper, we present research results of developing high performance scan conversion unit and implementing it on FPGA chip. To increase performance of scan conversion unit, we propose an architecture of scan converter that is a SIMD architecture and uses tile-based traversing method. The proposed scan conversion unit can operate about 124Mhz clock frequency on Xilinx Vertex4 LX100 device. To verify the scan conversion unit, we also develop shader unit, texture mapping unit and $240{\times}320$ color TFT-LCD controller to display outputs of the scan conversion unit on TFT-LCD. Because the scan conversion unit implemented on FPGA has 311Mpixels/sec pixel rate, it is applicable to desktop pc's 3d graphics system as well as mobile 3d graphics system needing high pixel rates.

Development of Ultrasound B-scanner(II)-Digital Scan Converter- (초음파 B스캔너의 개발(II) -시스템 및 아나로그 부분-)

  • 김영모;이민화
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.85-92
    • /
    • 1984
  • A new architecture of the Digital Scan Converter (DSC) for the linear-scan ultrasound medical imaging systems is proposed and its hardware implementation is reported. While the conventional DSC merely displays the acquisited data and does nor allow access to the frame memory, it is possible, in the new system, to access to the frame memory for further imaging processing so as to obtain useful information for medical diagnosis. Image processing can be performed either by a special pupose processor, or by VAX 11/780. The system is made to operate asyncronously to increase the frame rate with tags assigned to the data. The proposed DSC was designed to be used without much modification for the sector scan system as well.

  • PDF

A Fast Sensing Method using Concurrent Driving and Sequential Sensing for Large Capacitance Touch Screens (동시구동 및 순차센싱을 이용한 대형 정전용량 터치스크린용 고속 센싱 기법)

  • Mohamed, Mohamed G.A.;Kim, HyungWon;Cho, Tae-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.62-70
    • /
    • 2015
  • Recently the demand for projected capacitance touch screens is sharply growing especially for large screens for medical devices, PC monitors and TVs. Large touch screens in general need a controller of higher complexity. They usually have a larger number of driving and sensing lines, and hence it takes longer to scan one frame for touch detection leading to a low frame scan rate. In this paper, a novel touch screen control technique is presented, which scans each frame in two steps of simultaneous multi-channel driving. The first step is to drive all driving lines simultaneously and determine which sensing lines have any touch. The second step is to sequentially rescan only the touched sensing lines, and determine exact positions of the touches. This technique can substantially increase the frame scan rate. This technique has been implemented using an FPGA and an AFE board, and tested using a commercial 23-inch touch screen panel. Experimental results show that the proposed technique improves the frame scan rate by 8.4 times for the 23-inch touch screen panel over conventional methods.

Fast Motion Estimation Algorithm for Efficient MPEG-2 Video Transcoding with Scan Format Conversion (스캔 포맷 변환이 있는 효율적인 MPEG-2 동영상 트랜스코딩을 위한 고속 움직임 추정 기법)

  • 송병철;천강욱
    • Journal of Broadcast Engineering
    • /
    • v.8 no.3
    • /
    • pp.288-296
    • /
    • 2003
  • ATSC (Advanced Television System Committee) has specified 18 video formats for DTV (Digital Television), e.g., scan format, size format, and frame rate format conversion. Effective MPEG-2 video transcoders should support any conversion between the above-mentioned formats. Scan format conversion Is hard to Implement because it may often induce frame rate and size format conversion together. Especially. because of picture type conversion caused by scan format conversion, the computational burden of motion estimation (ME) in transcoding becomes serious. This paper proposes a fast ME algorithm for MPEG-2 video transcoding supporting scan format conversion. Firstly, we extract and compose a set of candidate motion vectors (MVs) from the input bit-stream to comply with the re-encoding format. Secondly, the best MV is chosen among several candidate MVs by using a weighted median selector. Simulation results show that the proposed ME algorithm provides outstanding PSNR performance close to full search ME, while reducing the transcoding complexity significantly.