• Title/Summary/Keyword: scale reduction model

Search Result 402, Processing Time 0.023 seconds

The effect of Reynolds numbers on the steady state aerodynamic force coefficients of the Stonecutters Bridge deck section

  • Hui, M.C.H.;Zhou, Z.Y.;Chen, A.R.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.179-192
    • /
    • 2008
  • In a wind tunnel experiment employing a reduced scale model, Reynolds number (Re) can hardly be respected. Its effects on the aerodynamics of closed-box bridge decks have been the subject of research in recent years. Stonecutters Bridge in Hong Kong is a cable-stayed bridge having an unprecedented central span of 1018m. The issue of Re sensitivity was raised early in the design phase of the deck of Stonecutters Bridge. The objective of this study is to summarise the results of various wind tunnel experiments in order to demonstrate the effect of Re on the steady state aerodynamic force coefficients. The results may provide an insight on the choice of scale for section model experiments in bridge design projects. Computational Fluid Dynamics (CFD) analysis of forces on bridge deck section was also carried out to see how CFD results are compared with experimental results.

A Pilot-Scale Study of Multiple Stage of Constructed Wetland Treatment System and Modeling for Nutrient Removal (Pilot 규모 연속배열형 인공습지의 영양염류 제거효능 규명 및 평가모델 연구)

  • Choi, Seung Il;Iamchaturapatr, Janjit;Rhee, Jae Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.781-788
    • /
    • 2010
  • A pilot study was performed to examine the feasibility of multiple stage of constructed wetland (CW) for nutrient removal. The system is composed of six wetland cells connected with water-ways. The hydraulic of wetland cells is designed as free water surface flow. The treatment capacity was $25m^3d^{-1}$ at HRT of about one day for each cell. The magnitude of nutrient removal was related with the length of wetlands and plant density. Total N and P removal rates were 1353 and $246mg\;m^{-2}d^{-1}$ respectively. The pilot-scale reactor was model as continuous flow system containing contribution of CSTR and PFR typed-reactors. The $k-C^*$ model equation was applied to predict N and P reduction. The result indicated the equation was well guided to estimate reduction of $NO_3-N$ and $PO_4-P$.

HSPF Modeling for Identifying Runoff Reduction Effect of Nonpoint Source Pollution by Rice Straw Mulching on Upland Crops (볏짚 피복에 의한 밭 비점원오염 저감효과 분석을 위한 HSPF 모델링)

  • Jung, Chung-Gil;Park, Jong-Yoon;Lee, Hyung-Jin;Choi, Joong-Dae;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • This study is to assess the reduction of non-point source pollution loads for rice straw surface covering of upland crop cultivation at a watershed scale. For Byulmi-cheon watershed ($1.21km^2$) located in the upstream of Gyeongancheon, the HSPF (Hydrological Simulation Program-Fortran), a physically based distributed hydrological model was applied. Before evaluation, the model was calibrated and validated using 9 rainfall events. The Nash-Sutcliffe model efficiency (NSE) for streamflow was 0.62~0.78 and the NSE for water quality (Sediment, T-N, and T-P) were 0.68, 0.60, and 0.58 respectively. From the field experiment of 16 rainfall events, the rice straw covering reduced surface runoff average 10 % compared to normal surface condition. By handling infiltration parameter (INFILT) in the model, the value of 16.0 mm/hr was found to reduce about 10 % reduction of surface runoff. For this condition, the reduction effect of Sediment, T-N, and T-P loads were 87.2, 28.5, and 85.1 % respectively. The rice straw surface covering was effective for removing surface runoff dependent loads such as Sediment and T-P.

Management Scheme According to Characteristics of PM-10 Occurred from Large Scale Development Site (대규모 단지조성 미세먼지 관리 방안)

  • Kwon, Woo-Taeg;Lee, Woo-Sik;Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.79-87
    • /
    • 2013
  • The purpose of this study is to establish PM-10 management manual for developing large scale sites by assessing the status of PM-10 reduction at ongoing large scale development sites. After analyzing the meteorological conditions and air quality characteristics of Sihwa MTV development site, ISCST3 (Industrial Source Complex Short Term Model 3) was implemented to predict PM-10 generation. The outcomes of ISCST3 modelling were utilized for verification of site survey data. As a result of applying air pollution modeling, the diffusion rate of PM-10 decreases according as the wind speed decreases. And the emission rate of PM-10 increase is linear to the concentration of PM-10. The reduction target of PM-10 can be derived quantitatively from the difference between the forecasted emission rate and the permissible emission limit of PM-10. The assessment of PM-10 characteristics which is deduced from ISCST3 and site survey can be practically applied to accomplish environmentally acceptable air quality manual for large scale development sites.

A comprehensive high Reynolds number effects simulation method for wind pressures on cooling tower models

  • Cheng, X.X.;Zhao, L.;Ge, Y.J.;Dong, J.;Demartino, C.
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.119-144
    • /
    • 2017
  • The traditional method for the simulation of high Reynolds number (Re) effects on wind loads on cooling tower models in wind tunnels focuses only on the mean wind pressure distribution. Based on observed effects of some key factors on static/dynamic flow characteristics around cooling towers, the study reported in this paper describes a comprehensive simulation method using both mean and fluctuating wind pressure distributions at high Re as simulation targets, which is indispensable for obtaining the complete full-scale wind effects in wind tunnels. After being presented in this paper using a case study, the proposed method is examined by comparing the full covariance matrices and the cross-spectral densities of the simulated cases with those of the full-scale case. Besides, the cooling tower's dynamic structural responses obtained using the simulated wind pressure fields are compared with those obtained by using the full-scale one. Through these works, the applicability and superiority of the proposed method is validated.

Simplified nonlinear simulation for composite segmental lining of rectangular shield tunnels

  • Zhao, Huiling;Liu, Xian;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.513-522
    • /
    • 2022
  • Steel-concrete composite segments replacing the conventional reinforced concrete segments can provide the rectangular shield tunnel superiorities on bearing capacity, ductility and economy. A simplified model with high-efficiency on computation is proposed for investigating the nonlinear response of the rectangular tunnel lining composed of composite segments. The simulation model is developed by an assembly of nonlinear fiber beam elements and spring elements to express the transfer mechanism of forces through components of composite segments, and radial joints. The simulation is conducted with the considerations of material nonlinearity and geometric nonlinearity associated with the whole loading process. The validity of the model is evaluated through comparison of the proposed nonlinear simulation with results obtained from the full-scale test of the segmental tunnel lining. Furthermore, a parameter study is conducted by means of the simplified model. The results show that the stiffness of the radial joint at haunch of the ling and the thickness of inner steel plate of segments have remarkable influence on the behaviour of the lining.

A Basic Study of Fuel 2-staging Y-jet Atomizer to Reduce NOx in Liquid Fuel Burner (액체 연료용 버너에서 NOx 저감을 위한 연료2단 분사 Y-jet 노즐에 관한 기초연구)

  • Song, Si-Hong;Lee, Gi-Pung;Kim, Hyeok-Je;Park, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1616-1623
    • /
    • 2001
  • A basic experimental study has been carried out to find out the design parameters of fuel 2-staging atomizers in order to reduce nitrogen oxides(NOx) rate emitted from the steam boilers used the liquid fuel. The heavy fuel oil(B-Coil) and fuel 2-staging Y-jet twin-fluid atomizers were adopted in this study. The results of this paper were obtained from the real as well as the model scale atomizers. In the case of model atomizers test, NOx reduction rate was strongly dependent on the staged fuel rate, but it was weakly dependent on the injection hole arrangement and air swirl conditions. The real scale atomizers was designed and manufactured on the base of these test results, and those was mounted and operated in the real boiler generates 185 ton steam per an hour. The reduction rate of the model and real plant was reached 10∼30% of base NOx by atomizers. but dust was sharply increased in the low O$_2$combustion region of the real plant.

ORDER REDUCTION OF LINEAR SYSTEMS BY MODAL METHOD (모달 방법을 사용한 선형시스템의 오더. 리덕손)

  • Lee, Kun-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1984.07a
    • /
    • pp.84-85
    • /
    • 1984
  • The accurate description of many physical processes leads to high number of different equations which are very difficult to handle for simulation or control purposes. The reduction of high-order, linear, time-invariant systems to lower-order ones has been investigated by many researchers. In this paper, a model technique among these methods is used. This technique has been developed here as if it were extensions of Davison's original method (1), its modification having been made to provide, among other things, steady state agreement between the original large-scale and reduced-order model. The advantage of the modal analysis approach is that only matrix operations have to be executed. Here, it is very simple to obtain a reduced model. An example of illustration is shown using the model method.

  • PDF

Reduction of Nominal Variables Using Factor Analysis Model (명목척도를 갖는 변수의 축약방법에 관한 연구)

  • 홍순욱;조근태;권철신
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.122-125
    • /
    • 1998
  • In this article, a reduction method for nominal variables is presented and its use illustrated. Factor analysis model (FAM) generally enables us to reduce variables having interval or ratio scale based on their correlation coefficients. We developed an extensive method that makes FAM applicative to the case of nominal variables which does not give correlation coefficients, but only the degree of association. Cramer's V coefficient is a well-established measure that provides the strength of association for nominal variables with a range of [0,1]. When Cramer's V coefficient can logically substitute for correlation coefficient, FAM would be extensively used for reduction of nominal variables.

  • PDF

Robust finite element model updating of a large-scale benchmark building structure

  • Matta, E.;De Stefano, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.371-394
    • /
    • 2012
  • Accurate finite element (FE) models are needed in many applications of Civil Engineering such as health monitoring, damage detection, structural control, structural evaluation and assessment. Model accuracy depends on both the model structure (the form of the equations) and the model parameters (the coefficients of the equations), and can be generally improved through that process of experimental reconciliation known as model updating. However, modelling errors, including (i) errors in the model structure and (ii) errors in parameters excluded from adjustment, may bias the solution, leading to an updated model which replicates measurements but lacks physical meaning. In this paper, an application of ambient-vibration-based model updating to a large-scale benchmark prototype of a building structure is reported in which both types of error are met. The error in the model structure, originating from unmodelled secondary structural elements unexpectedly working as resonant appendages, is faced through a reduction of the experimental modal model. The error in the model parameters, due to the inevitable constraints imposed on parameters to avoid ill-conditioning and under-determinacy, is faced through a multi-model parameterization approach consisting in the generation and solution of a multitude of models, each characterized by a different set of updating parameters. Results show that modelling errors may significantly impair updating even in the case of seemingly simple systems and that multi-model reasoning, supported by physical insight, may effectively improve the accuracy and robustness of calibration.