• Title/Summary/Keyword: scale and rotation robust

Search Result 57, Processing Time 0.026 seconds

Image Forgery Detection Using Gabor Filter (가보 필터를 이용한 이미지 위조 검출 기법)

  • NININAHAZWE, Sheilha;Rhee, Kyung-Hyune
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.520-522
    • /
    • 2014
  • Due to the availability of easy-to-use and powerful image editing tools, the authentication of digital images cannot be taken for granted and it gives rise to non-intrusive forgery detection problem because all imaging devices do not embed watermark. Forgery detection plays an important role in this case. In this paper, an effective framework for passive-blind method for copy-move image forgery detection is proposed, based on Gabor filter which is robust to illumination, rotation invariant, robust to scale. For the detection, the suspicious image is selected and Gabor wavelet is applied from whole scale space and whole direction space. We will extract the mean and the standard deviation as the texture features and feature vectors. Finally, a distance is calculated between two textures feature vectors to determine the forgery, and the decision will be made based on that result.

Image Similarity Retrieval using an Scale and Rotation Invariant Region Feature (크기 및 회전 불변 영역 특징을 이용한 이미지 유사성 검색)

  • Yu, Seung-Hoon;Kim, Hyun-Soo;Lee, Seok-Lyong;Lim, Myung-Kwan;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.446-454
    • /
    • 2009
  • Among various region detector and shape feature extraction method, MSER(Maximally Stable Extremal Region) and SIFT and its variant methods are popularly used in computer vision application. However, since SIFT is sensitive to the illumination change and MSER is sensitive to the scale change, it is not easy to apply the image similarity retrieval. In this paper, we present a Scale and Rotation Invariant Region Feature(SRIRF) descriptor using scale pyramid, MSER and affine normalization. The proposed SRIRF method is robust to scale, rotation, illumination change of image since it uses the affine normalization and the scale pyramid. We have tested the SRIRF method on various images. Experimental results demonstrate that the retrieval performance of the SRIRF method is about 20%, 38%, 11%, 24% better than those of traditional SIFT, PCA-SIFT, CE-SIFT and SURF, respectively.

Robust Eye Region Discrimination and Eye Tracking to the Environmental Changes (환경변화에 강인한 눈 영역 분리 및 안구 추적에 관한 연구)

  • Kim, Byoung-Kyun;Lee, Wang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1171-1176
    • /
    • 2014
  • The eye-tracking [ET] is used on the human computer interaction [HCI] analysing the movement status as well as finding the gaze direction of the eye by tracking pupil's movement on a human face. Nowadays, the ET is widely used not only in market analysis by taking advantage of pupil tracking, but also in grasping intention, and there have been lots of researches on the ET. Although the vision based ET is known as convenient in application point of view, however, not robust in changing environment such as illumination, geometrical rotation, occlusion and scale changes. This paper proposes two steps in the ET, at first, face and eye regions are discriminated by Haar classifier on the face, and then the pupils from the discriminated eye regions are tracked by CAMShift as well as Template matching. We proved the usefulness of the proposed algorithm by lots of real experiments in changing environment such as illumination as well as rotation and scale changes.

Blur-Invariant Feature Descriptor Using Multidirectional Integral Projection

  • Lee, Man Hee;Park, In Kyu
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.502-509
    • /
    • 2016
  • Feature detection and description are key ingredients of common image processing and computer vision applications. Most existing algorithms focus on robust feature matching under challenging conditions, such as inplane rotations and scale changes. Consequently, they usually fail when the scene is blurred by camera shake or an object's motion. To solve this problem, we propose a new feature description algorithm that is robust to image blur and significantly improves the feature matching performance. The proposed algorithm builds a feature descriptor by considering the integral projection along four angular directions ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$, and $135^{\circ}$) and by combining four projection vectors into a single highdimensional vector. Intensive experiment shows that the proposed descriptor outperforms existing descriptors for different types of blur caused by linear motion, nonlinear motion, and defocus. Furthermore, the proposed descriptor is robust to intensity changes and image rotation.

Development of Hybrid Image Stabilization System for a Mobile Robot (이동 로봇을 위한 하이브리드 이미지 안정화 시스템의 개발)

  • Choi, Yun-Won;Kang, Tae-Hun;Saitov, Dilshat;Lee, Dong-Chun;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.157-163
    • /
    • 2011
  • This paper proposes a hybrid image stabilizing system which uses both optical image stabilizing system based on EKF (Extended Kalman Filter) and digital image stabilization based on SURF (Speeded Up Robust Feature). Though image information is one of the most efficient data for object recognition, it is susceptible to noise which results from internal vibration as well as external factors. The blurred image obtained by the camera mounted on a robot makes it difficult for the robot to recognize its environment. The proposed system estimates shaking angle through EKF based on the information from inclinometer and gyro sensor to stabilize the image. In addition, extracting the feature points around rotation axis using SURF which is robust to change in scale or rotation enhances processing speed by removing unnecessary operations using Hessian matrix. The experimental results using the proposed hybrid system shows its effectiveness in extended frequency range.

Aerial scene matching using linear features (선형특징을 사용한 항공영상의 정합)

  • 정재훈;박영태
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.689-692
    • /
    • 1998
  • Matching two images is an essential step for many computer vision applications. A new approach to the scale and rotation invariant scene matching is presented. A set of andidate parameters are hypthesized by mapping the angular difference and a new distance measure to the hough space and by detecting maximally consistent points. The proposed method is shown to be much faster than the conventinal one where the relaxation process is repeated until convergence, while providing robust matching performance, without a priori information on the geometrical transformation parameters.

  • PDF

Automatic partial shape recognition system using adaptive resonance theory (적응공명이론에 의한 자동 부분형상 인식시스템)

  • 박영태;양진성
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.79-87
    • /
    • 1996
  • A new method for recognizing and locating partially occluded or overlapped two-dimensional objects regardless of their size, translation, and rotation, is presented. Dominant points approximating occuluding contoures of objects are generated by finding local maxima of smoothed k-cosine function, and then used to guide the contour segment matching procedure. Primitives between the dominant points are produced by projecting the local contours onto the line between the dominant points. Robust classification of primitives. Which is crucial for reliable partial shape matching, is performed using adaptive resonance theory (ART2). The matched primitives having similar scale factors and rotation angles are detected in the hough space to identify the presence of the given model in the object scene. Finally the translation vector is estimated by minimizing the mean squred error of the matched contur segment pairs. This model-based matching algorithm may be used in diveerse factory automation applications since models can be added or changed simply by training ART2 adaptively without modifying the matching algorithm.

  • PDF

MEGH: A New Affine Invariant Descriptor

  • Dong, Xiaojie;Liu, Erqi;Yang, Jie;Wu, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1690-1704
    • /
    • 2013
  • An affine invariant descriptor is proposed, which is able to well represent the affine covariant regions. Estimating main orientation is still problematic in many existing method, such as SIFT (scale invariant feature transform) and SURF (speeded up robust features). Instead of aligning the estimated main orientation, in this paper ellipse orientation is directly used. According to ellipse orientation, affine covariant regions are firstly divided into 4 sub-regions with equal angles. Since affine covariant regions are divided from the ellipse orientation, the divided sub-regions are rotation invariant regardless the rotation, if any, of ellipse. Meanwhile, the affine covariant regions are normalized into a circular region. In the end, the gradients of pixels in the circular region are calculated and the partition-based descriptor is created by using the gradients. Compared with the existing descriptors including MROGH, SIFT, GLOH, PCA-SIFT and spin images, the proposed descriptor demonstrates superior performance according to extensive experiments.

Shape Description and Recognition Using the Relative Distance-Curvature Feature Space (상대거리-곡률 특징 공간을 이용한 형태 기술 및 인식)

  • Kim Min-Ki
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.527-534
    • /
    • 2005
  • Rotation and scale variations make it difficult to solve the problem of shape description and recognition because these variations change the location of points composing the shape. However, some geometric Invariant points and the relations among them are not changed by these variations. Therefore, if points in image space depicted with the r-y coordinates system can be transformed into a new coordinates system that are invariant to rotation and scale, the problem of shape description and recognition becomes easier. This paper presents a shape description method via transformation from the image space into the invariant feature space having two axes: representing relative distance from a centroid and contour segment curvature(CSC). The relative distance describes how far a point departs from the centroid, and the CSC represents the degree of fluctuation in a contour segment. After transformation, mesh features were used to describe the shape mapped onto the feature space. Experimental results show that the proposed method is robust to rotation and scale variations.

Design of robust Watermarking Algorithm against the Geometric Transformation for Medical Image Security (의료 영상보안을 위한 기하학적 변형에 견고한 워터마킹 알고리즘 설계)

  • Lee, Yun-Bae;Oh, Guan-Tack
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2586-2594
    • /
    • 2009
  • A digital watermarking technique used as a protection and certifying mechanism of copyrighted creations including music, still images, and videos in terms of finding any loss in data, reproduction and pursuit. This study suggests using a selected geometric invariant point through the whole processing procedure of an image and inserting and extracting based on the invariant point so that it will be robust in a geometric transformation attack. The introduced algorithm here is based on a watershed splitting method in order to make medical images strong against RST(Rotation Scale, Translation) transformation and other processing. It also helps to maintain the watermark in images that are compressed and stored for a period of time. This algorithm also proved that is has robustness against not only JPEG compression attack, but also RST attack and filtering attack.