Image Similarity Retrieval using an Scale and Rotation Invariant Region Feature

크기 및 회전 불변 영역 특징을 이용한 이미지 유사성 검색

  • 유승훈 (인하대학교 전자공학과) ;
  • 김현수 (인하대학교 전자공학과) ;
  • 이석룡 (한국외국어대학교 산업경영공학부) ;
  • 임명관 (인하대학교 의과대학 영상의학과) ;
  • 김덕환 (인하대학교 전자공학과)
  • Published : 2009.12.15

Abstract

Among various region detector and shape feature extraction method, MSER(Maximally Stable Extremal Region) and SIFT and its variant methods are popularly used in computer vision application. However, since SIFT is sensitive to the illumination change and MSER is sensitive to the scale change, it is not easy to apply the image similarity retrieval. In this paper, we present a Scale and Rotation Invariant Region Feature(SRIRF) descriptor using scale pyramid, MSER and affine normalization. The proposed SRIRF method is robust to scale, rotation, illumination change of image since it uses the affine normalization and the scale pyramid. We have tested the SRIRF method on various images. Experimental results demonstrate that the retrieval performance of the SRIRF method is about 20%, 38%, 11%, 24% better than those of traditional SIFT, PCA-SIFT, CE-SIFT and SURF, respectively.

다양한 영역 검출 및 형태 특징 추출 방법 중에서 MSER과 SIFT를 응용한 방법들이 컴퓨터비전 분야에 많이 사용된다. 하지만 기존의 SIFT를 이용한 특징 추출 방법은 자기 변화에 민감한 특성을 지니며, MSER 방법은 이미지의 크기 변화에 민감하고, 이미지 유사성 검색에 그대로 적용하기에는 어려움이 많다. 본 논문에서는 스케일 피라미드, MSER 그리고 어파인(affine) 정규화 과정 등을 이용한 영역 특징 서술자를 제안한다. 제안한 방법은 어파인 정규화 방법과 스케일 피라미드를 사용하기 때문에 이미지의 크기, 회전 및 자기 변화에 불변하다. 다양한 이미지들을 이용하여 실험하고, 실험 결과에서 제안한 방법이 SIFT, PCA-SIFT, CE-SIFT 그리고 SURF 방법에 비해서 각각 20%, 38%, 11%, 24% 이상 좋은 이미지 검색 성능을 보이고 있다.

Keywords

References

  1. D. Lowe, 'Object Recognition from Local ScaleInvariant Features,' In Proceedings of International Conference on Computer Vision, pp.1150-1157, 1999
  2. D. Lowe, 'Distinctive Image Features from ScaleInvariant Keypoints,' International Journal of Computer Vision, vol.2, pp.91-110, 2004 https://doi.org/10.1023/B:VISI.0000029664.99615.94
  3. K Mikolajczyk, C Schmid, 'An affine invariant interest point detector,' In Proceedings of European Conference on Computer Vision, vol.1, pp. 128-142, 2002 https://doi.org/10.1007/3-540-47969-4_9
  4. S. H. Yu, D. H. Kim, S. L. Lee, C. W. Chung, S. H. Kim, 'SIFT based Image Similarity Search using an Edge Image Pyramid and an Interesting Region Detection,' Journal of KIISE ; Database, vol.35, pp.345-355, 2008. (in Korean)
  5. Y. Ke, R. Sukthankar, Larry Huston, 'An efficient parts-based near-duplicate and sub-image retrieval system,' In Proceedings of the 12th annual ACM international Conference on Multimedia, pp. 869-876, 2004 https://doi.org/10.1145/1027527.1027729
  6. J. J. Foo, J. Zobel, R. Sinha, and S. Tahaghoghi, 'Detection of near-duplicate images for web search,' In Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 557-564, 2007
  7. H. Bay, T. Tuytelaars, L. Van Gool, 'SURF:Speeded Up Robust Features,' In Proceedings of European Conference on Computer Vision, pp. 404-417, 2006 https://doi.org/10.1007/11744023_32
  8. R. O. Duda, P. E. Hart, 'Use of the Hough Transformation to Detect Lines and Curves in Pictures,' Communications of the ACM archive, vol.15, pp.11-15, 1972 https://doi.org/10.1145/361237.361242
  9. R. Fergus, P. Perona, A. Zisserman, 'Object Class Recognition by Unsupervised Scale-Invariant Learning,' In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, vol.2, pp.264-271, 2003 https://doi.org/10.1109/CVPR.2003.1211479
  10. A. Y. S. Chia, M. K. H. Leung, How-Lung Eng, S. Rahardja, 'Ellipse Detection with Hough Transform in One Dimensional Parametric Space,' In Proceedings of IEEE International Conference on Image Processing, vol.5, pp.333-336, 2007
  11. R. C. Gonzalez, R. E. Woods, 'Digital Image Processing 3rd edition,' Addison-Wesley, 2007
  12. L. Xu, E. Oja, 'Randomized Hough transform (RHT): basic mechanisms, algorithms, and computational complexities,' Computer Vision Graphics and Image Processing : Image Understanding, vol.57, pp.131-154, 1993 https://doi.org/10.1006/ciun.1993.1009
  13. J. Matas, O. Chum, M. Urban, and T. Pajdla, 'Robust wide baseline stereo from maximally stable extremal regions,' In Proceedings of British Machine Vision Conference, pp.384-393, 2002 https://doi.org/10.1016/j.imavis.2004.02.006
  14. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, L. V. Gool, 'A Comparison of Affine Region Detectors,' International Journal of Computer Vision, vol.65, pp.43-72, 2005 https://doi.org/10.1007/s11263-005-3848-x
  15. Z. Lin, S. Kim, I. S. Kweon, 'Robust Invariant Features for Object Recognition and Mobile Robot Navigation,' In Proceedings of International Association for Pattern Recognition Conference on Machine Vision Applications, pp.55-58, 2005
  16. Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, pp.509-522, 2002 https://doi.org/10.1109/34.993558
  17. http://research.microsoft.com/downloads
  18. http//staff.science.uva.nl/~aloi