• Title/Summary/Keyword: saturation magnetization

Search Result 466, Processing Time 0.082 seconds

Effects of Mn Substitution on Crystallographic and Magnetic Properties of Li-Zn-Cu Ferrites

  • Lee, Young Bae;Choi, Won-Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.210-214
    • /
    • 2014
  • The effects of manganese substitution on the crystallographic and magnetic properties of Li-Zn-Cu ferrite, $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$ ($0.0{\leq}x{\leq}0.8$), were investigated. Ferrites were synthesized via a conventional ceramic method. We confirmed the formation of crystallized particles using X-ray diffraction, field emission scanning electron microscopy and $M{\ddot{o}}ssbauer$ spectroscopy. All of the samples showed a single phase with a spinel structure, and the lattice constants linearly decreased as the substituted manganese content increased, and the particle size of the samples also somewhat decreased as the doped manganese content increased. All the $M{\ddot{o}}ssbauer$ spectra can be fitted with two Zeeman sextets, which are the typical spinel ferrite spectra of $Fe^{3+}$ with A- and B-sites, and one doublet. The cation distribution was determined from the variation of the $M{\ddot{o}}ssbauer$ parameters and of the absorption area ratio. The magnetic behavior of the samples showed that an increase in manganese content led to a decrease in the saturation magnetization, whereas the coercivity was nearly constant throughout. The maximum saturation magnetization was 73.35 emu/g at x = 0.0 in $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$.

Magnetic Properties of (Fe, Co)-Al-B-Nb Nanocrystalline Alloys on Composition and Annealing Temperature ((Fe, Co)-Al-B-Nb 초미세결정립합금의 조성 및 열처리온도에 대한 자기적 특성변화)

  • 강대병;김택기;조용수
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 1995
  • ${(Fe_{0.85}Co_{0.15})}_{75}Al_{7}B_{18-x}Nb_{x}(x=2,\;4\;and\;6\;at%)\;and\;{(Fe_{0.85}Co_{0.15})}_{75}Al_{y}B_{21-y}Nb_{4}(y=3,\;5,\;7,\;9\;at%)$ alloys were prepared by a single-roll quenching method. Microstructure and magnetic properties of the alloys such as saturation magnetization, initial permeability, coercive force and power loss have been investigated as functions of composition and armea1ing temperature. Nanocrystallines are obtained by armealing of as-prepared amorphous alloys in all compositions except the alloy of 9 at% AI. Saturation magnetization increases after armea1ing and, decreases with Nb content. However, AI and B affects the saturation magnetization insignificantly. Initial perrreability of nanocrystallized alloy at 50 kHz is improved roore than twice compared to that of the as-prepared alloy. Coercive force and core loss reach less than half after armea1ing.

  • PDF

Crystallographic and Magnetic Properties of Nickel Substituted Manganese Ferrites Synthesized by Sol-gel Method

  • Chae, Kwang Pyo;Choi, Won Oak;Lee, Jae-Gwang;Kang, Byung-Sub;Choi, Seung Han
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • Nickel substituted manganese ferrites, $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.6$), were fabricated by sol-gel method. The effects of sintering and substitution on their crystallographic and magnetic properties were studied. X-ray diffractometry of $Mn_{0.6}Ni_{0.4}Fe_2O_4$ ferrite sintered above 523 K indicated a spinel structure; particles increased in size with hotter sintering. The M$\ddot{o}$ssbauer spectrum of this ferrite sintered at 523 K could be fitted as a single quadrupole doublet, indicative of a superparamagnetic phase. Sintering at 573 K led to spectrum fitted as the superposition of two Zeeman sextets and a single quadrupole doublet, indicating both ferrimagnetic and paramagnetic phase. Sintering at 673 K and at 773 K led to spectra fitted as two Zeeman sextets due to a ferrimagnetic phase. The saturation magnetization and the coercivity of $Mn_{0.6}Ni_{0.4}Fe_2O_4$ ferrite sintered at 773 K were 53.05 emu/g and 142.08 Oe. In $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.6$) ferrites, sintering of any composition at 773 K led to a single spinel structure. Increased Ni substitution decreased the ferrites' lattice constants and increased their particle sizes. The M$\ddot{o}$ssbauer spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and the octahedral sites of the $Fe^{3+}$ ions. The variations of saturation magnetization and coercivity with changing Ni content could be explained using the changes of particle size.

Design of a CT Saturation Detection Technique with the Countermeasure for a Spike Signal

  • Kang, Yong-Cheol;Yun, Jae-Sung
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.85-92
    • /
    • 2003
  • When a current transformer (CT) is saturated, the wave-shape of the secondary current is distorted and contains points of inflection, which correspond to the start or end of each saturation period. Discontinuity in the first-difference function of the current arises at points of inflection, where the second and third differences convert into pulses that can be used to detect saturation. This paper describes the design and evaluation of a CT saturation detection technique using the third-difference function and includes the countermeasure for a spike signal. Test results clearly demonstrate that the algorithm successfully detects the start and end of each saturation period irrespective of the remanent flux and magnetization inductance in the saturated region. This paper concludes by describing the results of hardware implementation of the algorithm using a DSP.

New Magnetic Phases of Fe-N and Mn-Al Alloys Produced by Mechanochemical Milling (기계적 밀링 및 화학적 추출법에 의해 제조한 Fe-N 및 Mn-Al계의 새로운 자성재료)

  • Kyu-Jin Kim;Tae-Hwan Noh;Kenji Suzuki
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.4
    • /
    • pp.347-354
    • /
    • 1994
  • The structural change and magnetic properties of mechanically milled Fe-N and Mn-Al alloy powders have been investigated by XRD, TEM, VSM, $M\"{o}ssbauer$ spectroscopy and inelastic neutron scattering measurements. During milling of ${\gamma}'-Fe_{4}N$ powders, and fcc ${\gamma}'-Fe_{4}N$ phase is transformed to a bct ${\alpha}'-Fe(N)$ phase by stress-induced martensitic transformation, being accompanied by an initial increase in saturation magnetization. During annealing the bct ${\alpha}'-Fe(N)$ nanocrystalline phase which is obtained by mechanical grinding for a long time, an ${\alpha}'-Fe_{16}N_{2}$ phase partially appears as an intermediate phase at 673~773 K, causing an increase in saturation magnetization. During milling of Mn-45, 70 and 85 at.% Al mixed powders, Al atoms are partially solubilized into an ${\alpha}-Mn$ phase. The Al supersaturated ${\alpha}-Mn-type$ phases change from paramagnetic to ferromagnetic : the saturation magnetization is 11 emu/g for the as-milled Mn-70 at.% Al powders. Moreover, by removing almost all Al atoms from the as-milled Mn-85 at.% Al powders using chemical leaching, the saturation magnetization increases up to 36 emu/g. The above bct ${\alpha}'-Fe(N)$ and ferromagnetic ${\alpha}-Mn$ type alloys are the magnetic materials found for the first time, by using the present mechanochemical process.

  • PDF

Role of Chemical Exchange Saturation Transfer and Magnetization Transfer MRI in Detecting Metabolic and Structural Changes of Renal Fibrosis in an Animal Model at 3T

  • Anqin Li;Chuou Xu;Ping Liang;Yao Hu;Yaqi Shen;Daoyu Hu;Zhen Li;Ihab R. Kamel
    • Korean Journal of Radiology
    • /
    • v.21 no.5
    • /
    • pp.588-597
    • /
    • 2020
  • Objective: To investigate the value of combined chemical exchange saturation transfer (CEST) and conventional magnetization transfer imaging (MT) in detecting metabolic and structural changes of renal fibrosis in rats with unilateral ureteral obstruction (UUO) at 3T MRI. Materials and Methods: Thirty-five Sprague-Dawley rats underwent UUO surgery (n = 25) or sham surgery (n = 10). The obstructed and contralateral kidneys were evaluated on days 1, 3, 5, and 7 after surgery. After CEST and MT examinations, 18F-labeled fluoro-2-deoxyglucose positron emission tomography was performed to quantify glucose metabolism. Fibrosis was measured by histology and western blots. Correlations were compared between asymmetrical magnetization transfer ratio at 1.2 ppm (MTRasym(1.2ppm)) derived from CEST and maximum standard uptake value (SUVmax) and between magnetization transfer ratio (MTR) derived from MT and alpha-smooth muscle actin (α-SMA). Results: On days 3 and 7, MTRasym(1.2ppm) and MTR of UUO renal cortex and medulla were significantly different from those of contralateral kidneys (p < 0.05). On day 7, MTRasym(1.2ppm) and MTR of UUO renal cortex and medulla were significantly different from those of sham-operated kidneys (p < 0.05). The MTRasym(1.2ppm) of UUO renal medulla was fairly negatively correlated with SUVmax (r = -0.350, p = 0.021), whereas MTR of UUO renal medulla was strongly negatively correlated with α-SMA (r = -0.744, p < 0.001). Conclusion: CEST and MT could provide metabolic and structural information for comprehensive assessment of renal fibrosis in UUO rats in 3T MRI and may aid in clinical monitoring of renal fibrosis in patients with chronic kidney disease.

A Model of Magnetic Bearings Considering Eddy Currents and Hysteresis

  • Myounggyu Noh
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.5-11
    • /
    • 2003
  • A simulation model for radial magnetic bearings is presented. The model incorporates hysteresis, saturation and eddy current effects. A simple magnetization model that describes hysteresis and saturation is proposed. Eddy currents are taken into consideration by assuming that they are generated by single-turn fictitious coils wrapped around each magnetic flux path. The dynamic equations describing the simulation model can easily incorporate the operation of switching power amplifier. A simulation of a typical 8-pole radial magnetic bearing produces switching waveforms very similar to the experimental observation.

Magnetism in Ni-W textured substrates for coated conductors

  • Song K. J.;Park Y. M.;Yang J. S.;Kim S. W.;Ko R. K.;Kim H. S.;Ha H. S;Oh S. S.;Park C.;Joo J. H.;Kim C. J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.7-10
    • /
    • 2005
  • The magnetic properties of a series of both annealed (biaxially textured) and as-rolled (non-textured) Ni-xW alloy tapes with compositions x = 0,1,3, and 5 at.$\%$, were studied. Characterization methods included XRD analyses to investigate the biaxial cube texturing of the annealed Ni-W alloy tapes and studies of the magnetization M for both annealed and as-rolled Ni-W alloy tapes. Both the isothermal mass magnetizations M(H) of a series of samples at different fixed temperatures and M(T) in fixed field, employing a PPMS-9 (Quantum Design), were measured. The Ni-W alloys have shown much reduced ferromagnetism as W-content x increases. Both the saturation magnetization Msat and Curie temperature Tc decrease linearly with W-content x, and both Msat and Tc go to zero at critical concentration of Xc - 9.50 at. $\%$ W.

Effect of Annealing and Co contents on the Structural and Physical Properties in AlN Thin Films

  • Han, Chang-Suk;Han, Seung-Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.331-337
    • /
    • 2010
  • Aluminum nitride (AlN) thin films containing various amounts of Co content have been deposited by using a two-facing targets type sputtering (TFTS) system. The deposited films were also annealed successively and isothermally at different temperatures. Annealing treatment can control the physical properties as well as the microstructure of AlN films with Co particles. High magnetization and high resistivity are obtainable in AlN films containing dispersed Co particles. The coercivity of the films does not depend on annealing time, but it increases with increasing annealing temperature due to the increase of the grain size. A high saturation magnetization of 46 kG and resistivity of 2200 ${\mu}{\Omega}$-cm was obtained for AlN films containing 25 at% Co.

Exchange Coupling in NiFe/Ni Bilayer Fabricated By Electrodeposition

  • Kim, D.Y.;Jeon, S.J.;Kim, K.W.;Yoon, S.S.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.97-100
    • /
    • 2011
  • Bilayers of soft NiFe (150 nm-420 nm) on hard Ni (150 nm) were prepared by electrodeposition. The process of magnetization reversal in the NiFe/Ni bilayers was then investigated. The hysteresis loop generated by a magnetization reversal of soft NiFe under a positive saturation state of a hard Ni layer shows a shift along the negative field axis, which is clear evidence for the exchange spring effect in the NiFe/Ni bilayers. The dependence of the coercive field $H_c$ and exchange bias field Hex on the thickness of the NiFe layer was also investigated. As the NiFe thickness increases from 150 nm to 420 nm, both $H_c$ and $H_{ex}$ decrease rapidly from $H_c$= 51.7 Oe and $H_{ex}$ = 12.2 Oe, and saturate to $H_c$ = 5.8 Oe and $H_{ex}$ = 3.5 Oe.