DOI QR코드

DOI QR Code

Crystallographic and Magnetic Properties of Nickel Substituted Manganese Ferrites Synthesized by Sol-gel Method

  • Chae, Kwang Pyo (Nanotechnology Research Center, Department of Nano Science and Mechanical Engineering, Konkuk University) ;
  • Choi, Won Oak (Nanotechnology Research Center, Department of Nano Science and Mechanical Engineering, Konkuk University) ;
  • Lee, Jae-Gwang (Nanotechnology Research Center, Department of Nano Science and Mechanical Engineering, Konkuk University) ;
  • Kang, Byung-Sub (Nanotechnology Research Center, Department of Nano Science and Mechanical Engineering, Konkuk University) ;
  • Choi, Seung Han (Department of Oriental Biomedical Engineering, Daegu Haany University)
  • Received : 2012.11.26
  • Accepted : 2013.01.02
  • Published : 2013.03.31

Abstract

Nickel substituted manganese ferrites, $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.6$), were fabricated by sol-gel method. The effects of sintering and substitution on their crystallographic and magnetic properties were studied. X-ray diffractometry of $Mn_{0.6}Ni_{0.4}Fe_2O_4$ ferrite sintered above 523 K indicated a spinel structure; particles increased in size with hotter sintering. The M$\ddot{o}$ssbauer spectrum of this ferrite sintered at 523 K could be fitted as a single quadrupole doublet, indicative of a superparamagnetic phase. Sintering at 573 K led to spectrum fitted as the superposition of two Zeeman sextets and a single quadrupole doublet, indicating both ferrimagnetic and paramagnetic phase. Sintering at 673 K and at 773 K led to spectra fitted as two Zeeman sextets due to a ferrimagnetic phase. The saturation magnetization and the coercivity of $Mn_{0.6}Ni_{0.4}Fe_2O_4$ ferrite sintered at 773 K were 53.05 emu/g and 142.08 Oe. In $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.6$) ferrites, sintering of any composition at 773 K led to a single spinel structure. Increased Ni substitution decreased the ferrites' lattice constants and increased their particle sizes. The M$\ddot{o}$ssbauer spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and the octahedral sites of the $Fe^{3+}$ ions. The variations of saturation magnetization and coercivity with changing Ni content could be explained using the changes of particle size.

Keywords

References

  1. A. S. Albaguergye, J. D. Ardisson, and W. A. A. Macedo, J. Appl. Phys. 87, 4352 (2000). https://doi.org/10.1063/1.373077
  2. A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, New York (1990), p. 217.
  3. P. A. Shaikh, R. C. Kamble, A. V. Rao, and Y. D. Kolekar, J. Alloys Compd. 492, 590 (2010). https://doi.org/10.1016/j.jallcom.2009.11.189
  4. D. A. Kukuruznyak, J. G. Mayer, N. T. Nguyen, E. A. Stern, and F. S. Ohuchi, J. Electro. Spectro. Relatd Pheno. 150, 275 (2006). https://doi.org/10.1016/j.elspec.2005.06.009
  5. W. H. Kwon, J. Y. Kang, J. G. Lee, S. W. Lee, and K. P. Chae, J. Magnetics 15, 159 (2010). https://doi.org/10.4283/JMAG.2010.15.4.159
  6. S. W. Lee, J. G. Lee, K. P. Chae, W. H. Kwon, and C. S. Kim, J. Kor. Mag. Soc. 19, 57 (2009). https://doi.org/10.4283/JKMS.2009.19.2.057
  7. B. D. Cullity, Elements of X-Ray Diffraction, Addition- Wesley Co. Readings, MA (1978), p. 102.
  8. S. W. Lee and C. S. Kim, J. Magn. Magn. Mater. 304, 418 (2006). https://doi.org/10.1016/j.jmmm.2006.02.031
  9. S. W. Lee and C. S. Kim, J. Magnetics 10, 5 (2005). https://doi.org/10.4283/JMAG.2005.10.1.005
  10. W. H. Kwon, Ph.D. thesis, Konkuk University (2010) p. 98.
  11. M. Z. Schmalzrifd. J. Phys. Chem. 28, 203 (1961).
  12. R. K. Datta and B. Roy, J. Amer. Coram. Soc. 50, 578 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15002.x
  13. N. Yamamoto, S. Kawano, N. Achwa, M. Kiyama, and T. Takada, Japan. J. Appl. Phys. 12, 1830 (1973). https://doi.org/10.1143/JJAP.12.1830
  14. A. Meenasmsrndaram, N. Gunasekaran, and V. Sninivasan, Phys. Stat. Sol. (A) 69, K45 (1982).
  15. K. J. Kim, H. K. Kim, Y. R. Park, and J. Y. Park, J. Kor. Mag. Soc. 16, 23 (2006). https://doi.org/10.4283/JKMS.2006.16.1.023
  16. M. K. Shobana, S. Sankar, and V. Rayendran, Mater. Chem. Phys. 113, 10 (2009). https://doi.org/10.1016/j.matchemphys.2008.07.083

Cited by

  1. Ferrite Nanoparticles Prepared by Sol-gel vol.18, pp.3, 2013, https://doi.org/10.4283/JMAG.2013.18.3.230
  2. Ferrite Prepared by Solid State Reaction and Sol-gel vol.19, pp.1, 2014, https://doi.org/10.4283/JMAG.2014.19.1.064
  3. Studies on the Properties of Manganese Substituted Nickel Ferrite Nanoparticles vol.29, pp.11, 2016, https://doi.org/10.1007/s10948-016-3792-8
  4. The Properties of Mn, Ni, and Al Doped Cobalt Ferrites Grown by Sol-Gel Method vol.28, pp.7, 2018, https://doi.org/10.3740/MRSK.2018.28.7.371