• Title/Summary/Keyword: saturated two-phase flow

Search Result 27, Processing Time 0.044 seconds

Coupled Finite Element Analysis for Semi-implicit Linear and Fully-implicit Nonlinear Scheme in Partially Saturated Porous Medium

  • Kim, Jae-Hong;Regueiro, Richard A.
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.59-65
    • /
    • 2010
  • The paper presents a comparison between a semi-implicit time integration linear finite element implementation and fully-implicit nonlinear Newton-Raphson finite element implementation of a triphasic small strain mixture formulation of an elastic partially saturated porous medium. The pore air phase pressure pa is assumed atmospheric, i.e., $p_a$ = 0, although the formulation and implementation are general to handle increase in pore air pressure as a result of loading, if needed. The solid skeleton phase is assumed linear isotropic elastic and partially saturated 'consolidation' in the presence of surface infiltration and traction is simulated. The verification of the implementation against an analytical solution for partially saturated pore water flow (no deformation) and comparison between the two implementations is presented and the important of the porosity-dependent nature of the partially saturated permeability is assessed on comparison with a commercial code for the partially saturated flow with deformation. As a result, the response of partially saturated permeability subjected to the porosity influences on the saturation of a soil, and the different behaviors of the partially saturated soil between staggered and monolithic coupled programs is worth of attention because the negative pore water pressure in the partially saturated soil depends on the difference.

Effect of Parameters on the Two-Phase Flow Distribution Characteristics of Refrigerants in a Horizontal T-Junction (수평 T형 분지관 내 냉매 이상유동 분배특성에 미치는 변수들의 영향)

  • Tae Sang-Jin;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2006
  • The present study has been experimentally investigated the effect of geometric and operating parameters on the two-phase flow distribution of refrigerants in a horizontal T-junction. The operating parameters were the kind of refrigerants (R-22, R- l34a, and R-410A), saturated temperature, and the inlet mass flux and quality. The geometric parameters were the tube diameter and the tube diameter ratio. The measured data of refrigerants were compared with the values predicted using the models developed by several researchers for air/water or steani/water two-phase flow. Among the operating parameters, the inlet Quality was the most sensitive to the mass flow rate ratio. Between the geometric parameters, the tube diameter ratio was more sensitive than tube diameter.

Application of CFD to tile Calculation of 2 Phase Cryogenic Heat Transfer Processes (2상 극저온 열전달 과정 계산에서의 CFD 응용)

  • Liu, Jie.;Yue, Haibo;Chung, Mo;Bai, Cheol-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.141-147
    • /
    • 2011
  • A two-phase numerical model for plate-fin heat exchangers with plain fins and wave fins is studied incorporating the thermodynamic properties and the characteristics of fluid flow. The numerical simulations for the two fins in cryogenic conditions are earned out by employing a homogenous two-phase flow model with the CFD code ANSYS CFX. The heat transfer coefficients and the friction factor for nitrogen saturated vapor condensation process inside two types of plate fin heat exchanger are evaluated including the effects of saturation temperature (pressure), mass flow rate and inlet vapor quantity. The convective heat transfer coefficients and friction factors will be used for design of plate-fin type heat exchangers operating under cryogenic conditions.

  • PDF

Numerical prediction of a flashing flow of saturated water at high pressure

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Moody, Frederick J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1173-1183
    • /
    • 2018
  • Transient fluid velocity and pressure fields in a pressurized water reactor (PWR) steam generator (SG) secondary side during the blowdown period of a feedwater line break (FWLB) accident were numerically simulated employing the saturated water flashing model. This model is based on the assumption that compressed water in the SG is saturated at the beginning and decompresses into the two-phase region where saturated vapor forms, creating a mixture of steam bubbles in water by bulk boiling. The numerical calculations were performed for two cases of which the outflow boundary conditions are different from each other; one is specified as the direct blowdown discharge to the atmosphere and the other is specified as the blowdown discharge to an extended calculation domain with atmospheric pressure on its boundary. The present simulation results obtained using the two different outflow boundary conditions were discussed through a comparison with the predictions using a simple non-flashing model neglecting the effects of phase change. In addition, the applicability of each of the non-flashing water discharge and saturated water flashing models for the confirmatory assessments of new SG designs was examined.

An Experimental Study on Heat Transfer Coefficients just before Critical Heat Flux Conditions in Uniformly Heated Vertical Annulus (균일 가열 수직 환상관에서 임계열유속조건 직전의 열전달계수에 관한 실험적 연구)

  • Chun, Se-Young;Lim, Chang-Ha;Moon, Sang-Ki;Chung, Moon-Ki;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.330-336
    • /
    • 2001
  • Water heat transfer experiments were carried out in a uniformly heated annulus with a wide range of pressure conditions. The local heat transfer coefficients for saturated water flow boiling have been measured just before the occurrence of the critical heat flux (CHF) along the length of the heated section. The trends of the measured heat transfer coefficients were quite different from the conventional understanding for the heat transfer of saturated flow boiling. This discrepancy was explained from the nucleate boiling in the liquid film of annular flow under high heat flux conditions.

  • PDF

An Experimental Study on Heat Transfer Characteristics Just Before Critical Heat Flux in Uniformly Heated Vertical Annulus Under a Wide Range of Pressures

  • Chun, Se-Young;Moon, Sang-Ki;Chung, Heung-June;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.269-285
    • /
    • 2002
  • Water heat transfer experiments were carried out in a uniformly heated annulus with a wide range of pressure conditions. The local heat transfer coefficients for saturated water (low boiling have been measured just before the occurrence of the critical heat flux (CHF) along the length of the heated section. The trends of the measured heat transfer coefficients were quite different from the conventional understanding for the heat transfer of saturated flow boiling. This discrepancy was explained from the nucleate boiling in the liquid film of annular flow under high heat flux conditions. The well-known correlations were compared with the measured heat transfer coefficients. The Shah and Kandlikar correlations gave better prediction than the Chen correlation. However, the modified Chen correlation proposed in the present work showed the best agreement with the present data among correlations examined .

A PROPOSED CORRELATION FOR CRITICAL FLOW RATE OF WATER FLOW

  • KIM, YEON-SIK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.135-138
    • /
    • 2015
  • A new correlation predicting the idealized critical mass-flow rates of water for subcooled and saturated liquid water including two-phase water flow was developed for a wide range of upstream stagnation pressures (e.g., 0.5-20.0 MPa). A choking correction factor dependent on the upstream stagnation pressure and subcooled temperature was introduced into a new correlation, and its values were suggested to satisfy the idealized nozzle data within 10% error ranges. The suggested correlation will be instructive and helpful for related studies and/or engineering works.

Synthesis of an Aspartame Precursor Using Immobilized Thermolysin in an Organic Solvent

  • Ahn, Kyung-Seop;Lee, In-Young;Kim, Ik-Hwan;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.204-209
    • /
    • 1994
  • The synthesis of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methylester (Z-APM), a precursor of aspartame, from N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp) and L-phenylalanine methylester hydrochlolide($L-PM\cdot HCI$) was investigated in a saturated-ethylacetate single phase system using immobilized thermolysin. Among the various supports tested, glyceryl-CPG was found to be most efficient for retaining enzyme activity. The enzyme immobilized onto glyceryl-CPG also showed the highest activity for Z-APM synthesis in saturated ethyl acetate. Z-APM conversion yield in saturated ethylacetate was half of that obtained in an ethyl acetate-buffer two-phase system under the same reaction conditions. However, as the mole ratio of $L-PM \cdot HCI$ to Z-Asp was increased to 4.0, the conversion yield reached 95 %. When continuous synthesis of Z-APM was canied out in a plug flow reactor (PFR) with 80 mM of L-PMㆍHCI and 20 mM of Z-Asp in saturated ethylacetate (pH 5.5), more than 95 % of Z-Asp was converted to Z-APM with a space velocity of 1.16 $hr^{-1} at 40^{\circ}C$. Although the operational stability in PFR was reduced rapidly, more than 80% of initial activity was maintained in CSTR even after a week of operation.

  • PDF