• Title/Summary/Keyword: satellite optical observation

Search Result 169, Processing Time 0.029 seconds

Analysis of a Simulated Optical GSO Survey Observation for the Effective Maintenance of the Catalogued Satellites and the Orbit Determination Strategy

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Son, Ju-Young;Park, Sun-youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.237-245
    • /
    • 2015
  • A strategy is needed for a regional survey of geosynchronous orbits (GSOs) to monitor known space objects and detect uncataloged space objects. On the basis of the Inter-Agency Debris Committee's recommendation regarding the protected region of geosynchronous Earth orbit (GEO), target satellites with perigee and apogee of $GEO{\pm}200km$ and various inclinations are selected for analysis. The status of the GSO region was analyzed using the satellite distribution based on the orbital characteristics in publicly available two-line element data. Natural perturbation effects cause inactive satellites to drift to two stable longitudinal points. Active satellites usually maintain the designed positions as a result of regular or irregular maneuver operations against their natural drift. To analyze the detection rate of a single optical telescope, 152 out of 412 active satellites and 135 out of 288 inactive satellites in the GSO region were selected on the basis of their visibility at the observation site in Daejeon, Korea. By using various vertical view ranges and various numbers of observations of the GSO region, the detection efficiencies were analyzed for a single night, and the numbers of follow-up observations were determined. The orbital estimation accuracies were also checked using the arc length and number of observed data points to maintain the GSO satellite catalog.

Satellite Overquenching Problem

  • Yi, Suk-Young;Kimm, Tay-Sun
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.34.3-34.3
    • /
    • 2009
  • We have investigated the recent star formation history of the nearby galaxies using the SDSS optical and Galex UV data. To everyone's surprise, we found that roughly 30 percent of elliptical galaxies had a residual star formation in the last billion years, suggesting that residual star formation has been common even in ellipticals. Galaxy evolution models based on semi-analytic prescriptions including AGN feedback reasonably reproduce the star formation properties of elliptical galaxies. However, we found that the current galaxy models miserably fail to reproduce the star formation properties of satellite disc galaxies in cluster environments. Satellite disc galaxies in models are overly star-formation quenched in comparison to observation. Detailed investigations led us to conclude that this is due to the use of inaccurate prescriptions for the gas content evolution in the model. I present a solution to the problem by adopting more realistic physical prescriptions.

  • PDF

Fusion of Aerosol Optical Depth from the GOCI and the AHI Observations (GOCI와 AHI 자료를 활용한 에어로졸 광학두께 합성장 산출 연구)

  • Kang, Hyeongwoo;Choi, Wonei;Park, Jeonghyun;Kim, Serin;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.861-870
    • /
    • 2021
  • In this study, fused Aerosol Optical Depth (AOD) data were produced using AOD products from the Geostationary Ocean Color Imager (GOCI) onboard Communication, Oceanography and Meteorology Satellite (COMS)satellite and the Advanced Himawari Imager (AHI) onboard Himawari-8. Since the spatial resolution and the coordinate system between the satellite sensors are different, a preprocessing was first preceded. After that, using the level 1.5 AOD dataset of AErosol RObotic NETwork (AERONET), which is ground-based observation, correlations and trends between each satellite AOD and AERONET AOD were utilized to produce more accurate satellite AOD data than the originalsatellite AODs. The fused AOD were found to be more accurate than the originalsatellite AODs. Root Mean Square Error (RMSE) and mean bias of the fused AODs were calculated to be 0.13 and 0.05, respectively. We also compared errors of the fused AODs against those of the original GOCI AOD (RMSE: 0.15, mean bias: 0.11) and the original AHI AOD (RMSE: 0.15, mean bias: 0.05). It was confirmed that the fused AODs have betterspatial coverage than the original AODsin areas where there are no observations due to the presence of cloud from a single satellite.

Monitoring and Forecasting the Eyjafjallajökull Volcanic Ash using Combination of Satellite and Trajectory Analysis (인공위성 관측자료와 궤적분석을 이용한 Eyjafjallajökull 화산재 감시와 예측)

  • Lee, Kwon Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.139-149
    • /
    • 2014
  • A new technique, namely the combination of satellite and trajectory analysis (CSTA), for exploring the spatio-temporal distribution information of volcanic ash plume (VAP) from volcanic eruption. CSTA uses the satellite derived ash property data and a matching forward-trajectories, which can generate airmass history pattern for specific VAP. In detail, VAP properties such as ash mask, aerosol optical thickness at 11 ${\mu}m$ ($AOT_{11}$), ash layer height, and effective radius from the Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite were retrieved, and used to estimate the possibility of the ash forecasting in local atmosphere near volcano. The use of CSTA for Iceland's Eyjafjallaj$\ddot{o}$kull volcano erupted in May 2010 reveals remarkable spatial coherence for some VAP source-transport pattern. The CSTA forecasted points of VAP are consistent with the area of MODIS retrieved VAP. The success rate of the 24 hour VAP forecast result was about 77.8% in this study. Finally, the use of CSTA could provide promising results for VAP monitoring and forecasting by satellite observation data and verification with long term measurement dataset.

Feasibility of Red Tide Detection Around Korean Waters Using Satellite Remote Sensing

  • Suh Young-Sang;Jang Lee-Hyun;Lee Na-Kyung;Ishizaka Joji
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.148-162
    • /
    • 2004
  • The monitoring activities at the National Fisheries Research and Development Institute (NFRDI) in Korea have been extended to include all the coastal waters of Korea after the outbreak of Cochlodinium polykrikoides blooms in 1995. We used several alternative methods including climatological analysis, spectral and optical methods which may offer potential detection of the major species of red tide in Korean waters. In the climatological analysis, NOAA, SeaWiFS, OCM satellite data was chosen using the known C. polykrikoides red tide bloom data and the area was mapped by helicopter reconnaissance and ground observation. The relationship between the distribution of sea surface temperature to C. polykrikoides bloom areas was studied. The anomalies of SeaWiFS chlorophyll a imageries against the imageries of non-occurring red tide for August, 2001 showed where the C. polykrikoides occurred. The anomalies of chlorophyll a concentrations from the satellite data during red tide outbreaks showed a similar distribution of C. polykrikoides in the red tide in August, 2001. The distribution between differences in sea surface temperatures during the day and at night also showed a possibility for red tide detection. We used a corrected vegetation index (CVI) to detect floating vegetation and submerged vegetation containing algal blooms. The results of from the optical absorption of C. polykrikoides in the ultraviolet band (340 nm) showed that if we use the optical characteristics from each red tide, we will be able to establish the feasibility of red tide detection.

Optimal positioning of reaction wheel assemblies of optical observation satellite for minimizing image quality degradation (광학관측위성의 영상품질열화 최소화를 위한 반작용휠 최적위치 선정)

  • Im, Jeong Heum;Lim, Jae Hyuk;Kim, Kyung-Won;Yoon, Hyung-Joo;Kim, Sung-Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.9-16
    • /
    • 2018
  • This paper describes how to find out the optimum position of the reaction wheel assembly (RWA) to minimize image quality degradation through the integrated system jitter prediction combining the micro-vibration test with finite element analysis considering optical coefficients. Micro-vibration generated from RWA that is widely used for satellite maneuver, is one of key factors that degrades the quality of satellite image. Due to varying vibration characteristics of each RWA, its accommodation position may affect image quality even though the same company manufactured them. To resolve this issue, an integrated system jitter prediction is conducted with all possible RWA accommodation location, and finally we determine optimal RWA position from the analysis results.

Design Verification of Thermal Control Subsystem for EOS-C Ver.3.0 using STM Thermal Vacuum Test Result (STM 열진공 시험 결과를 이용한 EOS-C Ver.3.0 열제어계 설계 검증)

  • Chang, Jin-Soo;Yang, Seung-Uk;Jeong, Yun-Hwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1232-1239
    • /
    • 2010
  • A high-resolution electro-optical camera (EOS-C Ver.3.0), the mission payload of an Earth observation satellite, is under development in Satrec Initiative. We designed this system to give improved thermal performance compared with the EOS-C Ver.2.0 which is the main payload of DubaiSat-1 by optimizing the active and passive thermal control design. We developed the Structural-Thermal Model (STM) and verified the design margin by performing the qualification level thermal vacuum test. We also conducted the verification of its Thermal Mathematical Model (TMM) through the thermal balance test. As a result, it was confirmed that TMM faithfully represents the thermal characteristics of the EOS-C Ver.3.0.

Integrated Radiometric Signal Modeling for High Resolution Earth Observation Satellite Camera (고해상도 지구관측위성 카메라의 복사신호량에 대한 통합적 모델링)

  • Jang, Hong-Sul;Jung, Dae-Jun;Youk, Young-Chun;Lee, Seung-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.82-87
    • /
    • 2008
  • In this study, the radiometric signal modeling is performed for the high resolution earth observation system in visible spectral range from space. The medeling includes solar radiation as a source of the radiometric energy, atmosphere and surface albedo of earth, and the spaceborne camera characteristics for the integrated modeling. The final output of the radiometric modeling is the number of electron produced by the detector of electro-optical camera.

  • PDF

Analysis of the Thermal Dome Effect from Global Solar Radiation Observed with a Modified Pyranometer

  • Zo, Ilsung;Jee, Joonbum;Kim, Buyo;Lee, Kyutae
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.263-270
    • /
    • 2017
  • Solar radiation data measured by pyranometers is of fundamental use in various fields. In the field of atmospheric optics, the measurement of solar energy must be precise, and the equipment needs to be maintained frequently. However, there seem to be many errors with the existing type of pyranometer, which is an element of the solar-energy observation apparatus. In particular, the error caused by the thermal dome effect occurs because of the thermal offset generated from a temperature difference between outer dome and inner casing. To resolve the thermal dome effect, intensive observation was conducted using the method and instrument designed by Ji and Tsay. The characteristics of the observed global solar radiation were analyzed by classifying the observation period into clear, cloudy, and rainy cases. For the clear-weather case, the temperature difference between the pyranometer's case and dome was highest, and the thermal dome effect was $0.88MJ\;m^{-2}\;day^{-1}$. Meanwhile, the thermal dome effect in the cloudy case was $0.69MJ\;m^{-2}\;day^{-1}$, because the reduced global solar radiation thus reduced the temperature difference between case and dome. In addition, the rainy case had the smallest temperature difference of $0.21MJ\;m^{-2}\;day^{-1}$. The quantification of this thermal dome effect with respect to the daily accumulated global solar radiation gives calculated errors in the cloudy, rainy, and clear cases of 6.53%, 6.38%, and 5.41% respectively.

Spatial Characterization of MAC, a High-Resolution Optical Earth Observation Camera for Small Satellites

  • Kim Eugene D.;Choi Young-Wan;Yang Ho-Soon;Ismail Mohd. Afiq bin
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.79-83
    • /
    • 2005
  • Spatial calibrations have been performed on the Medium-sized Aperture Camera (MAC) of the RazakSAT satellite. Topics discussed in this paper include the measurements of system modulation transfer function (MTF), relative pixel line-of-sight (LOS), and end-to-end imaging tests. The MTF measurements were made by capturing the scanned knife-edge image on a pixel, and an issue in the MTF calculation algorithm is discussed. The method used to place the focal plane at the correct focal position is described, since they make use of MTF measurements. Relative LOS measurements are done by theodolite measurements of the telescope. Qualitative ground test result of end-to-end imaging is given.