• Title/Summary/Keyword: satellite operation

Search Result 893, Processing Time 0.025 seconds

Operation and Application Guidance for the Ground Based Dual-band Radiometer (지상 기반 듀얼 밴드 라디오미터의 운영 및 활용 가이던스)

  • Jeon, Eun-Hee;Kim, Yeon-Hee;Kim, Ki-Hoon;Lee, Hee-Sang
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.441-458
    • /
    • 2008
  • A TP/WVP-3000A, ground-based microwave radiometer, that was first introduced to South Korea has been operated since August 22, 2007 at the National Center for Intensive Observation of Severe Weathers (NCIO). Using the dual-band, the radiometer provides temperature and humidity soundings from the surface up to 10 km height with the high-temporal resolution of a few minutes. In this study, the performance of the radiometer on the predictability of the high impact weathers was evaluated and various practical applications were investigated. To verify the retrieved profile data from the radiometer, temperature and relative humidity soundings are compared with those from the rawinsonde launched at the NCIO and Gwangju station. The root mean squared errors for temperature and relative humidity soundings were smaller under rainy weather conditions. The correlation coefficient between PWVs (Precipitable Water Vapors) obtained from the radiometer and Global Positioning System satellite at Mokpo station is 0.92 on average. In order to investigate the structure and characteristics of precipitation, stability indexes related to rainfall such as the Convective Available Potential Energy (CAPE), K-index, and Storm RElative Helicity (SREH) were calculated using windprofiler at the NCIO from 14 to 16 September, 2007. CAPE and K-index tended to be large when the thermodynamic unstability was strong. On the other hand, SREH index was dominantly large when the dynamic unstability was strong due to the passage of the typhoon 'Nari'.

Tracking and Orbit Determination of International Space Station using Radar (레이더를 이용한 국제우주정거장 추적 및 궤도결정)

  • Yu, Ki-Young;Chung, Dae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.447-454
    • /
    • 2016
  • Increase of space debris makes low earth orbit(LEO) environment more complex day by day and space situation Awareness(SSA) is becoming more important. As an essential part of SSA, space object surveillance and tracking is studied by many countries including America and Europe. And radar system forms the backbone of an space surveillance and tracking. Currently, Korea operates many LEO satellites like KOMPSAT but does not have dedicated radar systems which provide collision surveillance between satellite and space debris. Korea Aerospace Research Institute(KARI) NARO space center operates launch-vehicle tracking radar system in GOHEUNG and JEJU, respectively. In this paper, we describe developing operation concept to track International Space Station(ISS) using NARO radar and results of tracking. Then, we describe ISS orbit determination using radar tracking data. Lastly, orbit determination result is compares with TLE for analyzing effectiveness of orbit determination.

Ground Vibration Test for Korea Sounding Rocket - III (KSR-III의 전기체 모달 시험)

  • 우성현;김영기;이동우;문남진;김홍배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

Characteristics of Ocean Scanning Multi-spectral Imager (OSMI)

  • Cho, Young-Min;Yong, Sang-Soon;Woo, Sun-Hee;Lee, Sang-Gyu;Oh, Kyoung-Hwan;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.319-324
    • /
    • 1998
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a whisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of < 1 km over the entire field-of-view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The instrument also performs sun calibration and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400 nm to 900 nm using a CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands after launch. The instrument performances are fully measured for 8 basic spectral bands centered at 412nm, 443nm, 490nm, 510nm, 555nm, 670nm, 765nm and 865nm during ground characterization of instrument. In addition to the ground calibration, the on-board calibration will also be used for the on-orbit band selection. The on-orbit band selection capability can provide great flexibility in ocean color monitoring.

  • PDF

Pansharpening Method for KOMPSAT-2/3 High-Spatial Resolution Satellite Image (아리랑 2/3호 고해상도 위성영상에 적합한 융합기법)

  • Oh, Kwan-Young;Jung, Hyung-Sup;Jeong, Nam-Ki
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.161-170
    • /
    • 2015
  • This paper presents an efficient image fusion method to be appropriate for the KOMPSAT-2 and 3 satellites. The proposed method is based on the well-established component substitution (CS) approach. The proposed method is divided into two parts: 1) The first step is to create a intensity image by the weighted-averaging operation of a multi-spectral (MS) image and 2) the second step is to produce an optimal high-frequency image using the statistical properties of the original MS and panchromatic (PAN) images. The performance of the proposed method is evaluated in both quantitative and visual analysis. Quantitative assessments are performed by using the relative global dimensional synthesis error (Spatial and Spectral ERGAS), the image quality index (Q4), and the spectral angle mapper index (SAM). The qualitative and quantitative assessment results show that the fusion performance of the proposed method is improved in both the spectral and spatial qualities when it is compared with previous CS-based fusion methods.

An Example of Internal Wave Detection in North Coastal Waters of Cheju Island Using a SAR Image (SAR를 이용한 제주도 북부해역에서의 내부파 관측예)

  • Kim, Tae-Rim;Won, Joong-Sun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 1999
  • The satellite image acquired by RADARSAT SAR on August 15, 1996 reveals internal waves in north coastal waters of Cheju Island. It is indicated from the image data, the tidal elevation data, and the bottom topography data, the internal waves seem to be generated by interaction between shallow bottom and tidal currents travelling in the stratified water in the summer time during the tidal changeovers from ebb to flood. The internal waves generated in such condition show patterns of trains of solitons. Probable amplitude of observed solitons is calculated using estimation of the soliton wave length from SAR image data and K-dV equation. Detection of the internal waves is very significant not only to military strategist for underwater maneuvers such as operation of submarines, but also to physical and biological oceanographers. Temporal and spatial variation of the internal waves are needed to be measured by simultaneous in-situ field study together with SAR to examine the nature of these internal waves.

  • PDF

A Study on the Performance of COMS CPS during LEOP (천리안 위성의 LEOP기간 동안의 추진계 성능 연구)

  • Chae, Jong-Won;Han, Cho-Young;Yu, Myoung-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.258-263
    • /
    • 2012
  • In this paper the Chemical Propulsion Subsystem of COMS is briefly explained and some telemetries acquired by a series operations of CPS during the Launch and Early Operation Phase of COMS are presented. The pressure and temperature of pressurant tank telemetries are compared with the results of the developed computer program. The changes in pressure are due to the two major phases. The first one is the initialization phases of CPS composed of the venting phase to vent the helium gas in the pipe network from the downstream of the propellant tanks to the thrusters for safety, the priming phase to fill the vented pipe network with oxidizer and fuel respectively and then the pressurization phase to pressurize the ullage of propellant tank to regulated pressure. And the other is the apogee engine firings in which COMS CPS is in the orbit raising phase to use helium as a pressurant to keep the pressure of propellant tank as the liquid apogee engine get fired until COMS reached to the target orbit. This program can be applicable to prepare basis design data of the next Geostationary Satellite CPS.

Automatic Extraction Method of Control Point Based on Geospatial Web Service (지리공간 웹 서비스 기반의 기준점 자동추출 기법 연구)

  • Lee, Young Rim
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.2
    • /
    • pp.17-24
    • /
    • 2014
  • This paper proposes an automatic extraction method of control point based on Geospatial Web Service. The proposed method consists of 3 steps. 1) The first step is to acquires reference data using the Geospatial Web Service. 2) The second step is to finds candidate control points in reference data and the target image by SURF algorithm. 3) By using RANSAC algorithm, the final step is to filters the correct matching points of candidate control points as final control points. By using the Geospatial Web Service, the proposed method increases operation convenience, and has the more extensible because of following the OGC Standard. The proposed method has been tested for SPOT-1, SPOT-5, IKONOS satellite images and has been used military standard data as reference data. The proposed method yielded a uniform accuracy under RMSE 5 pixel. The experimental results proved the capabilities of continuous improvement in accuracy depending on the resolution of target image, and showed the full potential of the proposed method for military purpose.

Using Spatial Data and Land Surface Modeling to Monitor Evapotranspiration across Geographic Areas in South Korea (공간자료와 지면모형을 이용한 면적증발산 추정)

  • Yun J. I.;Nam J. C.;Hong S. Y.;Kim J.;Kim K. S.;Chung U.;Chae N. Y.;Choi T. J
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.149-163
    • /
    • 2004
  • Evapotranspiration (ET) is a critical component of the hydrologic cycle which influences economic activities as well as the natural ecosystem. While there have been numerous studies on ET estimation for homogeneous areas using point measurements of meteorological variables, monitoring of spatial ET has not been possible at landscape - or watershed - scales. We propose a site-specific application of the land surface model, which is enabled by spatially interpolated input data at the desired resolution. Gyunggi Province of South Korea was divided into a regular grid of 10 million cells with 30m spacing and hourly temperature, humidity, wind, precipitation and solar irradiance were estimated for each grid cell by spatial interpolation of synoptic weather data. Topoclimatology models were used to accommodate effects of topography in a spatial interpolation procedure, including cold air drainage on nocturnal temperature and solar irradiance on daytime temperature. Satellite remote sensing data were used to classify the vegetation type of each grid cell, and corresponding spatial attributes including soil texture, canopy structure, and phenological features were identified. All data were fed into a standalone version of SiB2(Simple Biosphere Model 2) to simulate latent heat flux at each grid cell. A computer program was written for data management in the cell - based SiB2 operation such as extracting input data for SiB2 from grid matrices and recombining the output data back to the grid format. ET estimates at selected grid cells were validated against the actual measurement of latent heat fluxes by eddy covariance measurement. We applied this system to obtain the spatial ET of the study area on a continuous basis for the 2001-2003 period. The results showed a strong feasibility of using spatial - data driven land surface models for operational monitoring of regional ET.

Ultra-wideband Antipodal Vivaldi Antenna with H-shaped Parasitic Patches (에이치(H)자 형태의 기생패치를 가진 초광대역 안티포달 비발디 안테나)

  • Jung, Dongkeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1642-1648
    • /
    • 2017
  • Ultra-wideband antennas are desired for several applications including satellite communications, radars, remote sensing system, telescopes, and microwave imaging systems. There are many types of wideband antenna structures, but the tapered slot Vivaldi antenna is advantageous in terms of cost, weight, scan angle capabilities, end-fire radiation, and ease of feeding and system integration. In this paper, a modified antipodal Vivaldi antenna is presented. A novel AVA with H-shaped parasitic patches has the capacity to improve the radiation characteristics in the whole operation frequencies. A prototype of the modified antenna with RT/duroid 5880 substrate of a relative dielectric constant (${\epsilon}_r$) of 2.2, and a thickness of 31mil is fabricated and experimentally studied as well. It measures a ${\mid}S_{11}{\mid}$ of less than -10dB and gain of 9-12dBi over 7.8-52.5GHz which shows reasonable agreement with the simulated one.