• Title/Summary/Keyword: satellite operation

Search Result 901, Processing Time 0.021 seconds

The Development of C&DH subsystem in the D-SAT System

  • Zenaida Awalludin Sitti;Mat Yusoff Norhan
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.39-41
    • /
    • 2004
  • This paper demonstrates the in-house development of the subsystem C&DH in a D-SAT satellite project of Astronautic Technology (M) Sdn. Bhd. (ATSB). D-SAT is a non-imaging satellite. It will carry a dosimeter as the payload for scientific objectives. Since one of the D-SAT project establishment intended objectives is to demonstrate the research and development skill of the ATSB engineers on the satellite system building, most of the subsystems of the D-SAT are developed in-house including the C&DH subsystem. C&DH subsystem plays an important role for managing data handling tasks and general operation of the satellite system. The C&DH development includes the research and study on the hardware and software design, the design of both the hardware and software, the development of the software system, the integration between the software and the hardware system and the implementation of the subsystem into the satellite system. This program allows ATSB to accomplish the engineers with expertise not only in the C&DH subsystem but other subsystems too besides developing knowledge in the management of a space project that covers not only on the technical issues but issues relating to the economic, political and legal issues.

  • PDF

The Construction and Development of Support System for Satellite image Commercialization (위성영상 상용화 지원시스템 구축 및 개발)

  • Bae, Hee-Jin;Jeon, Gab-Ho;Jun, Jung-Nam;Kim, Min-A;Chae, Tae-Byeong
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • Utilization of KOMPSAT-2 satellite image is growing, because the resolution of KOMPSAT -2 is improved 43.5 times than that of KOMPSAT-1. To support for satellite image commercialization, KOCUST(KOMPSAT Customer & User Support Team) was composed, operation process was established and defined and support system for satellite image Commercialization was constructed. Also the support system constantly is improved for various user. In this paper, organization and function of support system developed so far these days for commercial user and operations related with it were described. In addition, direction of development was discussed

  • PDF

Space Physics Sensor on KOMPSAT-1

  • Min, Kyoung-Wook;Choi, Young-Wan;Shin, Young-Hoon;Lee, Jae-Jin;Lee, Dae-Hee;Kim, Jhoon
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.355-360
    • /
    • 1998
  • A small package of plasma instruments, Space Physics Sensor, will monitor the space environment and its effects on microelectronics in the low altitude region as it operates on board the KOMPSAT-1 from 1999 over the maximum of the solar cycle 23. The Space Physics Sensor (SPS) consists of two parts: the Ionospheric Measurement Sensor (IMS) and the High Energy Particle Detector (HEPD). IMS will make in situ Measurements of the thermal electron density and temperature, and is expected to provide a global map of the thermal electron characteristics and the variability according to the solar and geomagnetic activity in the high altitude ionosphere of the KOMPSAT-t orbit. HEPD will measure the fluxes of high energy protons and electrons, monitor the single event upsets caused by these energetic charged particles, and give the information of the total radiation dose received by the spacecraft. The continuous operation of these sensors, along with the ground measurements such as incoherent scatter radars, digital ionosondes and other spacecraft measurements, will enhance our understanding of this important region of practical use for the low earth orbit satellites.

  • PDF

Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite (천리안위성 2A호 지구정지궤도위성 궤도결정)

  • Yongrae Kim;Sang-Cherl Lee;Jeongrae Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.

Improvement of ESD (Electrostatic Discharge) Protection Performance of NEDSCR (N-Type Extended Drain Silicon Controlled Rectifier) Device using CPS (Counter Pocket Source) Ion Implantation (CPS 이온주입을 통한 NEDSCR 소자의 정전기 보호 성능 개선)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • An electrostatic discharge (ESD) protection device, so called, N-type extended drain silicon controlled rectifier (NEDSCR) device, was analyzed for high voltage I/O applications. A conventional NEDSCR device shows typical SCR-like characteristics with extremely low snapback holding voltage. This may cause latch-up problem during normal operation. However, a modified NEDSCR device with proper junction/channel engineering using counter pocket source (CPS) ion implantation demonstrates itself with both the excellent ESD protection performance and the high latch-up immunity. Since the CPS implant technique does not change avalanche breakdown voltage, this methodology does not reduce available operation voltage and is applicable regardless of the operation voltage.

Quasi-Resonant PWM Converter Controlled by Constant Frequency (일정한 주파수로 제어되는 쿼지 공진형 PWM 컨버터)

  • Joung, Gyubum
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.28-32
    • /
    • 2017
  • In this paper, a quasi-resonant PWM converter, which is controlled by constant frequency, has been suggested. As quasi-resonant converter, the switches of the suggested converter has soft switching characteristics, which can operate to high frequency with high efficiency. Comparing with varied controlled frequency of quasi-resonant converter for controlling output voltage, the suggested converter has advantages which optimize filter and EMI filter design at constant switching frequency. The converter has been analyzed by switch mode analysis which verified soft switching operation. Also, the PWM operation and characteristics of the converter are verified by simulation and experiment of 100 kHz DC-DC converter.

Review of SMOS Mission and Current Operation (SMOS 위성 개발 및 운용 현황)

  • Park, Hyuk;Lee, Ho-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.59-64
    • /
    • 2010
  • The second satellite in ESA's Earth Explorer series, the Soil Moisture and Ocean Salinity (SMOS) mission was launched into orbit at November 1, 2009. The SMOS will play a key role in the monitoring of climate change on a global scale using the payload of L-band synthetic aperture radiometer. It is the first ever satellite designed both to map sea surface salinity and to monitor soil moisture on a global scale, and will provide the important data to study the water cycle among oceans, the atmosphere and land. To introduce the operation of the SMOS, this paper shows brief summary of appearance and current operation.

Throughput Analysis of SBC for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Chang Y.J.;Lee S.H.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.593-596
    • /
    • 2005
  • The MSC is a remote sensing instrument with very high performance that is to be installed on KOMPSAT2 satellite. The MSC consists of EOS (Electro-Optic Subsystem), PMU (Payload Management Unit) and PDTS (Payload Data Transmission Subsystem). PMU controls and monitors all the other payload units by sending commands and collecting telemetry. PMU is in charge of interfacing between payload system and satellite bus system. PMU gets commands from ground-station via OBC (On-Board Computer) that is a main controller of the satellite bus system and sends telemetry to the ground-station via OBC. There is a processor module, called SBC (Single Board Computer) in the PMU. The SBC is a main controller of the MSC system. The main roles of the SBC are payload mission management, command validation and execution, telemetry collection and monitoring, ancillary data handling, event reporting, power control of payload sub-units and communication with these units. Intel's 80486DX2 processor has been used for the SBC. Due to the fact that the SBC plays important roles for imaging mission execution and handles a lot of control data that is required for payload operation, it is required to make analysis of the CPU load when it is in maximum operation mode. In this paper, the analysis and measurement results of the SBC throughput in the maximum operation mode.

  • PDF

A Study on Adaptive Operation Control to Stabilize bus Voltage of GEO Satellite Power Supply Module (정지궤도 위성용 전력공급 모듈의 버스 전압 안정화를 위한 최적동작 제어에 관한 연구)

  • Ahn, Tae-Young;Choe, Hyun-Su
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.123-129
    • /
    • 2016
  • In this paper, results of produced PCU(Power Control Unit) prototype was showed by suggesting and maintaining optimal operation status which let the three functional modules automatically operate with its necessity by prioritizing operation process. In order to validate effectiveness of the suggested method, we produced a test PCU and examined the results. PCU consists of S3R(Sequential Switching Shunt Regulator), BCR(Battery Charge Regulator), and BDR(Battery Discharge Regulator): converting photovoltaic power into constant voltage at linked bus voltage; storing dump power in the battery which is an auxiliary energy storage device; and supplying power charged in battery to the load. To maintain its high reliability and optimal condition of these three power conversion modules, each module operates in parallel and stable bus voltage is required to be retained at all-time due to the nature of power supply for satellite.

Research and Application of Satellite Orbit Simulation for Analysis of Optimal Satellite Images by Disaster Type : Case of Typhoon MITAG (2019) (재난유형별 최적 위성영상 분석을 위한 위성 궤도 시뮬레이션 연구 및 적용 : 태풍 미탁(2019) 사례)

  • So-Mang, LIM;Ki-Mook, KANG;Eui-Ho, HWANG;Wan-Sik, YU
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.210-221
    • /
    • 2022
  • In order to promptly respond to disasters, the era of new spaces has opened where satellite images with various characteristics can be used. As the number of satellites in operation at home and abroad increases and the characteristics of satellite sensors vary, it is necessary to find satellite images optimized for disaster types. Disaster types were divided into typhoons, heavy rains, droughts, forest fires, etc., and the optimal satellite images were selected for each type of disaster considering satellite orbits, active/passive sensors, spatial resolution, wavelength bands, and revisit cycles. Each satellite orbit TLE (Two Line Element) information was applied to the SGP4 (Simplified General Perturbations version 4) model to develop a satellite orbit simulation algorithm. The developed algorithm simulated the satellite orbit at 10-second intervals and selected an accurate observation area by considering the angle of incidence of each sensor. The satellite orbit simulation algorithm was applied to the case of Typhoon Mitag in 2019 and compared with the actual satellite list. Through the analyzed results, the time and area of the captured image and the image to be recorded were analyzed within a few seconds to select the optimal satellite image according to the type of disaster. In the future, it is intended to serve as a basis for building a system that can promptly request and secure satellite images in the event of a disaster.